

FINAL PHASE V COMPLETION REPORT

Former Pechiney Cast Plate, Inc. Facility
3200 Fruitland Avenue
Vernon, California

Prepared for:

Pechiney Cast Plate, Inc.

Prepared by:

AMEC Environment & Infrastructure, Inc.

121 Innovation Drive, Suite 200 Irvine, California 92617-3094 (949) 642-0245

> September 26, 2014 Revised June 24, 2015 Project No. 0106270030

FINAL PHASE V COMPLETION REPORT

Former Pechiney Cast Plate, Inc., Facility 3200 Fruitland Avenue Vernon, California

September 26, 2014 Revised June 24, 2015

Project 0106270030

This report was prepared by the staff of AMEC Environment & Infrastructure, Inc. under the supervision of the Engineer and Geologist whose signatures appear hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

Linda Conlan, PG Principal Geologist

Calvin Hardcastle, PE Principal Engineer

TABLE OF CONTENTS

		P	age
1.0	INTRO	DUCTION AND BACKGROUND	1
2.0	SCOPE	OF WORK AND REMEDIATION GOALS	3
3.0	CONC	RETE SAMPLING AND REMOVAL	4
4.0	SOIL R	EMOVAL, VERIFICATION SAMPLING, AND BACKFILL	5
5.0	OTHER	R MATERIALS OR MEDIA SAMPLED	6
6.0	WASTE	E MANAGEMENT AND DISPOSAL	6
7.0	BELOV	V GRADE DEMOLITION AND STRUCTURE REMOVALS	7
8.0	CONCL	LUSIONS AND VERIFICATION OF COMPLETION	8
9.0	REFER	RENCES	9
		TABLES	
Table 1 Table 2 Table 3 Table 4 Table 5 Table 6	2 3 4 5	Site-Specific Remediation Goals Concrete Sample Results – PCBs Soil and Other Sample Results – PCBs Soil and Other Sample Results – TPH Soil and Other Sample Results – Metals Quantities of Materials Removed for Disposal	
		FIGURES	
Figure 2 Figure 3 Figure 3 Figure 4 Figure 6 Figure 7	2 3 4 5 6	Site Location Map Site Plan - Phase V Area Below Grade Concrete Sample Locations and Structures Soil Sample Locations Soil Removal Areas and Sample Locations for 0 to 5 feet Below Grade Structure Locations – Pre-Demolition and Actual Record Drawing	
		APPENDIXES	
Append Append Append Append Append Append	dix B dix C dix D dix E	Laboratory Reports and Chain-of-Custody Documentation – Soil, Concrete a Other Media Als Wipe Sample Results and Locations NORM Report In Place Structure Information Compaction Testing Report and Crushed Concrete Gradation Information Record Drawings (Site-Wide)	and

ACRONYMS

ACM Asbestos containing materials

AIS American Integrated Services, Inc.

AMEC AMEC Environment & Infrastructure, Inc.

Aurora Industrial Hygiene, Inc.

COC Chemical of Concern

DTSC California Department of Toxic Substances Control

FS Feasibility Study (AMEC, 2012a)
HHRA Human Health Risk Assessment

mg/kg milligrams per kilogram

NORM Natural Occurring Radioactive Material µg/100 cm² micrograms per 100 centimeters squared

MSL mean sea elevation

OSI Occupational Services, Inc.

Pechiney Pechiney Cast Plate, Inc.

PAH polycyclic aromatic hydrocarbon

PCBs polychlorinated biphenyls

Plan Revised Below Grade Demolition Plan (AMEC, 2012d)

RAO remedial action objective

RAP Remedial Action Plan (AMEC, 2012c)

Report Phase V Area Completion Report

SAP Sampling and Analysis Plan (AMEC, 2010)

site Former Pechiney Cast Plate, Inc. Facility, located at 3200 Fruitland Avenue,

Vernon, California

SVE soil vapor extraction

TPH total petroleum hydrocarbons
TSCA Toxic Substances Control Act

US EPA United States Environmental Protection Agency, Region IX

VOC volatile organic compound

FINAL PHASE V AREA COMPLETION REPORT

Former Pechiney Cast Plate, Inc. Facility Vernon, California

1.0 INTRODUCTION AND BACKGROUND

On behalf of Pechiney Cast Plate, Inc. (Pechiney), AMEC Environment & Infrastructure, Inc. (AMEC), prepared this report (Report) to document the completion of the below grade demolition and soil removal work for the Phase V Area (Parcel 6) of the Pechiney Facility, located at 3200 Fruitland Avenue, in Vernon, California (site; Figure 1). The Phase V Area is shown on Figure 2. This final Report is being submitted to address comments received from the California Department of Toxic Substances Control (DTSC) in its letters to Pechiney dated November 24, 2014, December 19, 2014, and March 6, 2015. This final Report also documents response actions taken by the former Pechiney Facility to perform below grade demolition of the facility as described in the Remedial Action Plan (RAP; AMEC, 2012c), and to address impacted soil encountered during the below grade demolition work. These actions, including verification sampling and analysis, and waste removal and off-site disposal, were conducted as stated herein this Report and in conformance with the Revised Below Grade Demolition Plan (Plan) (AMEC, 2012d). The Plan was approved by the City of Vernon Community Services. The RAP was approved by the California Department of Toxic Substances Control (DTSC) and the polychlorinated biphenyl (PCB) elements were conditionally approved by United States Environmental Protection Agency, Region IX (US EPA).

In order to expedite the review process for this project, the site has been divided into four areas, and four completion reports, one for each area, has been submitted to the DTSC, the US EPA, and the City of Vernon Community Services. The completion report for the Phase I Area was previously submitted on June 6, 2014.

A Feasibility Study (FS; AMEC, 2012a) was prepared on behalf of Pechiney to evaluate potential human health risks and potential remedial technologies that were used to provide recommendations for the proposed, preferred remedy for impacted soil and soil vapor in the vadose zone and impacted concrete at the site. The FS included a detailed summary of the historical operations, previous assessment results (concrete, soil and groundwater, etc.), areas remediated by others, potential constituents of concern (COCs), a baseline Human Health Risk Assessment (HHRA), risk-based remediation goals for COCs, and remedial alternatives to address COCs exceeding risk-based remediation goals. As summarized in the

FS, the chemical of concern (COCs) for the site included PCBs (concrete and soil); volatile organic compounds (VOCs; soil, soil vapor and groundwater) in the Phase I Area; and Stoddard solvent (soil and soil vapor) and metals in the Phase III/IV Area. Potential COCs in the Phase V Area included metals (mainly lead), PCBs and total petroleum hydrocarbons (TPH). Other potential constituents, such as hexavalent chromium, polycyclic aromatic hydrocarbon (PAHs), and dioxins/furans were not considered potential COCs for the site for the following reasons:

- Hexavalent chromium Hexavalent chromium was not identified as a COC associated with the former aluminum manufacturing operations, nor was it detected in soil in the area of the cooling tower in the Phase III Area of site. Processes that are typically associated with hexavalent chromium, such as chrome plating, were not conducted at the site. In addition, it would not be considered a by-product of the aluminum manufacturing processes. Although hexavalent chromium was not identified as a COC, the site-specific risk-based screening level for total chromium was based on a 1:6 ratio of hexavalent chromium to total chromium in the absence of speciation for hexavalent chromium (as recommended by US EPA at that time).
- PAHs or dioxins/furans The Swindell Pit Furnace that was located in the Phase I Area (Figure 2) or other furnaces at the site were used to melt metals, primarily aluminum and not organics. The fuels that many have been used in this equipment may have been fuel oil or natural gas. In this type of furnace, partial combustion of organic matter would not occur. The melting point for aluminum is 1200 degrees Fahrenheit (°F), which is well above the temperature that typically results in the formation of PAHs or dioxins/furans. These compounds form at temperatures ranging between 550 °F or 800 °F.

As summarized in the FS, a soil removal was conducted by others in the Phase V Area in the area of former Building 135 for lead. The area where the soil removal was conducted for lead is shown on Figure 3, and details and sample results are included in the FS (2012a).

Based on the FS, the RAP (AMEC, 2012c) was prepared to provide the details and procedures to be used for remediating PCB-impacted concrete during demolition of below-grade features present at the site and remediating impacted soil during below-grade demolition. On-site areas were COCs were detected above the risk-based remediation goals were included in the RAP. The RAP was approved by DTSC on June 28, 2012, and pursuant to the Toxic Substances Control Act (TSCA), the PCB elements of the RAP were conditionally approved by US EPA in July 2010 and 2012.

The soil removal work in the Phase V Area (Figure 2) was conducted in accordance with the RAP using site-specific background concentrations and risk-based screening levels (RBSLs) for metals, PCBs and TPH presented in the approved FS. The RAP included a summary of the site background; site history; regional, local, and site geology and hydrogeology; results of

previous investigations and constituents of potential concern; results of a soil screening evaluation; remedial action objectives (RAOs); criteria used to establish these objectives; site-specific RBSLs for soil; scope of the remedial action; and protocols for verification sampling to be conducted after completing demolition and remedial activities.

The Plan (AMEC, 2012d) was submitted to the City of Vernon Community Services on November 30, 2011 and implementation of the Plan was approved by Community Services with the issuance of the permits for the below grade demolition work (permit # B00-088-125) and site grading (permit # B00-088-126) on October 22, 2012 (re-issued August 22, 2013 and November 5, 2012, respectively) to American Integrated Services, Inc. (AIS) of Wilmington, California, the contractor selected by Pechiney to perform the demolition work. The below grade demolition work in the Phase V Area was conducted as described in the Plan. As noted in the Plan and RAP, soil removal was planned only for areas where metals or PCBs were detected in shallow soil at concentrations exceeding site-specific risk-based remediation goals for future commercial/industrial site use pursuant to the FS and RAP.

The below grade demolition and soil removal work (related to metals and TPH) was conducted by AIS under contract to Pechiney. AMEC observed AIS' work and conducted the soil verification sampling and perimeter air monitoring with the assistance of Aurora Industrial Hygiene (Aurora).

2.0 SCOPE OF WORK AND REMEDIATION GOALS

As described in the RAP and Plan, the scope of work for concrete and soil removals included the following work.

- Site mobilization, preparation, and below grade demolition permitting.
- If encountered, demarcation, removal, and offsite disposal of PCB-impacted concrete with PCB concentrations greater than 1 milligram per kilogram (mg/kg).
- If encountered, demarcation, excavation, verification soil sampling, and offsite disposal of PCB-impacted soil using in situ data.
- Testing and removal of below grade structures within the upper 10 feet relative to the surface elevation in the area of the structure (within the Phase V Area). The surface elevation (native grade) for this area ranged from 177 to 179 feet mean sea level [MSL] on the west side [Note: the surface elevation/native grade of the Phase V Area is lower than the remainder of the site]. In situ testing of concrete structures was conducted to select the disposition of the concrete and to determine the need to collect soil samples below the structure.
- Collection of verification soil samples below PCB-impacted concrete slabs and structures.

- Identification, verification sampling, handling, and disposal of impacted soil
 encountered during below grade demolition work. Soil impacts in this area of the
 site were not anticipated. Based on field observations and the fill material
 encountered during surface cover removals, soil removals and subsequent testing
 and disposal in the western portion of the Phase V were conducted.
- Removal of underground piping and utilities within the upper 3 feet of soil beneath the surface and terminating utility conduits at the site boundary.
- Removal and disposal of buried rail lines and sampling soil below these rail lines.
- Conducting perimeter air monitoring as described in the Revised Perimeter Air Monitoring Plan (AMEC, 2011). The final results of the monitoring will be provided in a separate report for the project.
- Conducting backfill, compaction, and site grading for the Phase V Area.

A brief summary of the concrete sampling and removal work; soil removal, verification soil sampling, placement of backfill materials; other media sampled during the below grade work; waste management and disposal; and below grade demolition work is provided below. The RAP site-specific remediation goals used for soil and concrete during the below grade work are provided in Table 1, along with the site-specific background concentration and RBSLs for metals (such as lead) presented in the FS. In addition, and as required of the City of Vernon, the site-specific PCB remediation goal for concrete was set at greater than 1 mg/kg to eliminate the onsite placement of Restricted Fill outlined in the RAP.

3.0 CONCRETE SAMPLING AND REMOVAL

Prior to beginning the below grade demolition work, asphalt and concrete slab (isolated sections) removals were conducted in the Phase V Area. As asphalt and concrete slab removal progressed, underlying areas of discolored concrete (pink to magenta) were encountered in the northwest corner of the Phase V Area and in some cases discolored soil (black, gray, and/or orange-brown) and fill debris were encountered on the west side of this area under the surface cover.

The concrete slabs and structures that were removed during the below grade demolition work were located primarily in the western parcel of the Phase V Area. Material found within the structures, such as oily sediments, was tested for PCBs, metals and TPH. The concrete and material sample results were used to select the methods for managing the concrete (e.g., released for onsite crushing or transported off-site for disposal). A summary of the concrete sample results is provided in Table 2 and approximate sample locations are shown on Figure 3. Material sample results are summarized on Tables 3, 4, and 5 and approximate sample locations are shown on Figure 5. Analytical laboratory reports are included in Appendix A.

4.0 SOIL REMOVAL, VERIFICATION SAMPLING, AND BACKFILL

Phase V Area soil removal areas were identified during the removal of the surface cover on the west side of this area, and demarcated based on the debris encountered (e.g. fill materials consisting of metal, glass, broken copper piping, brick, etc.) and discolored soil. Initial samples collected of the debris/soil, along with the visual appearance of the fill material, were used to select the areas that required soil removal. The fill material was easily demarcated from the surrounding native soil based on appearance (glass, metal, broken copper piping, etc.) and color. Soil removal in this area was guided by sample results and/or visual observations. After the soil was excavated, verification soil sampling for PCBs, TPH and metals was conducted as described in the SAP and RAP.

In addition to the fill material, a gray slag material was encountered below the pavement (sample #1059). This material was removed for disposal based on visual methods and did result in an excavation.

As below grade structures were encountered and tested, soil sampling below these features was also conducted as outlined in the SAP and RAP. Soil samples depths were measured from the ground surface (which ranged from 177 to 179 feet MSL). Based on this testing, additional areas of metals-impacted soil were identified that required removal for offsite disposal in the Phase V Area. The soil sample locations are shown on Figure 4 (all locations) and Figure 5 (for soil between 0 and 5 feet relative to native grade). The soil removals areas are shown on Figure 5.

A summary of the soil sample results are provided in Tables 3, 4 and 5, and the approximate verification soil sample locations are shown on Figure 5. Soil sample locations that were excavated in the Phase V Area are shown in gray on Figure 5 and listed in Tables 3, 4, and 5 as such with an "E". The remaining soil sample locations shown in black on Figure 5 remain in place and the concentrations of constituents of concern are below the site-specific remediation goals. Analytical laboratory reports are included in Appendix A.

For clarification, furnaces or furnace operations were not present in the Phase V area based on review of historical records; as such soil sampling and analyses for PAHs or dioxins/furans were not warranted. The material encountered in the Phase V Area with a "burned" appearance was mixed with other debris and did not appear to be burned in place, such as sample #1070. This debris, including the "burned" looking material, was excavated and disposed of offsite. The extent of the soil removed was based on sample results and visual indications of the removal of the debris.

Based on the confirmation/verification sampling in the soil removal areas, portions of the Phase V area were released for completion as described in Section 7.0 below. The excavated area was groomed in preparation for final grading.

5.0 OTHER MATERIALS OR MEDIA SAMPLED

As the below grade demolition work progressed, other materials were encountered and required testing. In addition, below grade piping was also tested for PCBs using wipe sample methods. Wipe samples of piping sections were collected by AIS and analyzed for PCBs. The wipe sample results, sample locations and analytical laboratory reports are included in Appendix B. PCBs were not detected in the wipe samples collected from the pipe sections (with a reporting limit of 1 microgram per 100 centimeters squared [µg/100 cm²]), were removed and shipped offsite for recycling.

In addition, debris composed of refractory bricks was encountered below the surface cover in isolated areas of the Phase V area. Occupational Services, Inc. (OSI) collected samples of this material for isotopic analysis, and concluded that the bricks contained low levels of naturally occurring uranium and thorium daughter products at levels that constitute naturally occurring radioactive material (NORM). A copy of OSI's summary report is included in Appendix C.

6.0 WASTE MANAGEMENT AND DISPOSAL

Waste materials generated during below grade demolition and soil removal work were transported off-site for recycling or to appropriate disposal facilities during the course of the project. Waste materials included demolition debris and various solids. Vehicles and equipment were cleaned of soil and dust prior to leaving the site. AIS was responsible for securing and covering transport vehicles and containers pursuant to applicable Department of Transportation requirements.

Waste materials were sampled and profiled pursuant to regulatory and Treatment, Storage, and Disposal Facility requirements prior to any materials leaving the site. Concrete with PCBs was profiled for disposal based on in situ concentrations pursuant to US EPA's conditional approval letter (US EPA, 2010). Transportation and disposal activities were performed in compliance with applicable state, local, and/or federal laws, and as outlined in the Hazardous Materials Transportation Plan (AMEC, 2012b).

Table 6 provides the approximate quantities of materials removed from the Phase V Area during the below grade demolition and soil removal work and identifies the associated disposal facilities. A final summary of the waste quantities, waste profiles and signed manifests for

materials shipped off site for disposal from the Phase V Area and other Phase Areas was submitted to DTSC in February 2015 (Amec Foster Wheeler, Letter dated February 4, 2015).

7.0 BELOW GRADE DEMOLITION AND STRUCTURE REMOVALS

A few below grade structures were encountered in the Phase V Area and included structural footings, pit/sumps, and concrete blocks below the concrete slab. The locations of the below grade structures are shown on Figure 6, which also depicts the anticipated location of the structures (shaded gray) compared to the actual location of the structures (shaded black).

All of these structures were removed in their entirety as encountered below grade except for the footing for structure #917. No portion of these removed structures is known to remain in place following completion of the demolition activities in the Phase V Area.

Structure #917 was a metal pole with a hook attached to a below grade concrete footing that appeared to extend beneath the block wall separating the west parcel of Phase V Area from the adjacent rail road property. When attempts were made to remove this footing, the block wall began to move. Because attempting to remove the footing was causing instability in the block wall, the metal pole and hook were removed but the concrete footing was left in place and surveyed. This excavation was subsequently backfilled. The record drawing for this structure is included in Appendix D.

Concrete that did not contain PCBs at concentrations greater than 1 mg/kg, was transferred to a concrete stockpile for crushing or was shipped off site for recycling after the concrete crusher equipment was demobilized. The crushed concrete was later used for backfill material at the site and to cover the site in conformance with the Plan (AMEC, 2012d). Gradation reports for the crushed concrete are included in Appendix E.

As noted in Section 4.0, areas of soil excavations are shown on Figure 5, and these areas along with areas where slabs or structures were removed were released for grading. The excavation areas were prepared for final grade by recontouring the remaining site soil. Where required, the backfill material was compacted in conformance with the Plan (AMEC, 2012d). The results of the compaction testing conducted by NorCal Engineering are provided in Appendix E. The record drawing of the final site grading is included in Appendix F.

As specified by the Plan (AMEC, 2012d), underground piping and utilities that were encountered in the upper 3 feet of the site were removed. If the utility piping extended off site, then the utility connection was terminated at the property boundary and capped in conformance with City of Vernon requirements. The locations of terminated utility connections

are shown on Figure 7. A final site-wide record drawing for these features is included in Appendix F.

8.0 CONCLUSIONS AND VERIFICATION OF COMPLETION

AMEC received notification from AIS that they had completed their scope of work for below grade demolition and soil removal work in the Phase V Area. AIS prepared a record drawing (Figure 7) illustrating locations of capped and decommissioned utilities and structures. In addition, AMEC completed verification sampling related to PCBs and metals and confirms that the soil removals were completed pursuant to the RAP for the areas that were discovered in the course of the demolition work were completed.

In addition, this report is being submitted to the City of Vernon Community Services to document the completion of the below grade demolition work in the Phase V Area in accordance with Plan.

This Report documents response actions taken by the former Pechiney facility to perform below grade demolition of the facility and the conduct the soil removals a pursuant to the RAP. These actions, including verification sampling and analysis procedures, waste removal and offsite disposal, were conducted as stated herein this Report and in conformity with the Plan prepared by AMEC (AMEC, 2012d) and approved by the City of Vernon Community Services and the RAP prepared by AMEC (AMEC, 2012c) and approved by the DTSC and the PCB elements conditionally approved by US EPA.

This certification does not warrant or guarantee that all hazardous materials have been completely removed from the site. Hazardous materials may be present at the site in environmental media including soil, soil vapor, and groundwater as a result of not being encountered or identified during below grade demolition activities or previous site assessments.

9.0 REFERENCES

- AMEC Environment & Infrastructure, Inc. (AMEC), 2010, Concrete and Soil Sampling and Analysis Plan, Draft, Former Pechiney Cast Plate, Inc., Facility, Vernon, California, July 27.
- AMEC, 2011, Revised Perimeter Air Monitoring Plan, Below Grade Demolition and Remediation Activities, Former Pechiney Cast Plate, Inc. Facility, Vernon, California, revised October 28.
- AMEC, 2012a, Feasibility Study, Former Pechiney Cast Plate, Inc., Facility, Vernon, California, May 7.
- AMEC, 2012b, Hazardous Materials Transportation Plan, Former Pechiney Cast Plate, Inc., Facility, Vernon, California, November, 2010, revised April 12.
- AMEC, 2012c, Remedial Action Plan, Former Pechiney Cast Plate, Inc. Facility, 3200 Fruitland Avenue, Vernon, California, June, 28.
- AMEC, 2012d, Revised Below Grade Demolition Plan, Former Pechiney Cast Plate, Inc. Facility, 3200 Fruitland Avenue, Vernon, California, August, 31.
- Amec Foster Wheeler, 2015, "Quantities of Materials Removed during Below Grade Demolition, Former Pechiney Cast Plate, Inc. Facility, 3200 Fruitland Avenue, Vernon, California" letter to Chand Sultana, Project Manager, DTSC, February 4.
- U.S. EPA, 2010, Polychlorinated Biphenyls U.S. EPA Conditional Approval Under 40 CFR 761.61(c), Toxic Substances Control Act "Polychlorinated Biphenyls Notification Plan, Former Pechiney Cast Plate, Inc., Facility, Vernon, California, July 9, 2009," Letter from Jeff Scott, Director, Waste Management Division, to Donald Thompson, President Pechiney Cast Plate, July 2.
- U.S. EPA, 2011, Polychlorinated Biphenyls U.S. EPA Conditional Approval Under 40 CFR 761.61(c), Toxic Substances Control Act "Polychlorinated Biphenyls Notification Plan, Former Pechiney Cast Plate, Inc., Facility, Vernon, California, July 9, 2009," Letter providing conditional approval of the PCB Cleanup Levels from Jeff Scott, Director, Waste Management Division, to Donald Thompson, President Pechiney Cast Plate, July 1.
- U.S. EPA, 2014, Toxic Substances Control Act Polychlorinated Biphenyls (PCBs) PCB Cleanup, Former Pechiney Cast Plate, Inc., Facility, Vernon, California AMEC's Modifications to USEPA's Approvals, February 4.

TABLE 1 REVISED TABLE

SITE-SPECIFIC REMEDIATION GOALS PCBs IN SOIL AND CONCRETE, AND METALS AND TPH IN SOIL Phase V Area - Pechiney Cast Plate, Inc. Facility

3200 Fruitland Avenue Vernon, California

June 24, 2015 Rev2

	1	June 24, 2015 Rev2
Compound	Remediation Goal (mg/kg)	Explanation
PCBs in Soil		
Aroclor-1254	2.0	Noncarcinogenic RBSL ¹ for construction workers. Also protective of commercial/industrial worker exposure.
Total Aroclors For soil that may be left exposed at the surface (0 to 5 feet bgs)	3.5	Based on the regression analysis for dioxin-like PCB congeners versus total Aroclors in combined soil and concrete presented in Appendix E of the FS (AMEC, 2012a), the total Aroclor concentration that would result in a maximum dioxin TEQ concentration of 81 pg/g. ² Protective of cumulative commercial/industrial worker exposure, and cumulative construction worker exposure, to PCBs.
Total Aroclors For subsurface soil (5 to 15 feet bgs) that only construction workers may come into contact with during excavation, grading, etc. (and that would remain at 5 to 15 feet bgs)	23	Based on the regression analysis for dioxin-like PCB congeners versus total Aroclors in combined soil and concrete presented in Appendix E of the FS (AMEC, 2012a), the total Aroclor concentration that would result in a maximum dioxin TEQ concentration of 530 pg/g. ³ Protective of cumulative construction worker exposure to PCBs.
PCBs in Concrete	•	
Total Aroclors	1.0* 3.5	Based on the regression analysis for dioxin-like PCB congeners versus total Aroclors in combined soil and concrete presented in Appendix E of the FS (AMEC, 2012a), the total Aroclor concentration (3.5 mg/kg) that would result in a maximum dioxin TEQ concentration of 81 pg/g. Also protective of cumulative construction worker exposure to PCBs. Applying this remediation goal ensures that waste criteria for concrete containing PCBs is also met [i.e., less than 50 mg/kg, as defined in 40 CFR Section 761.61(a)(4)(i)(A)]. * As required by the City of Vernon (agency), the remediation goal for concrete was reduced to a concentration greater than 1 mg/kg to eliminate the placement of "Restricted Fill" onsite. As presented in the RAP (AMEC, 2012c), Restricted Fill was defined as concrete with PCBs at concentrations greater than 1 mg/kg and less than or equal to 3.5 mg/kg.
Metals in Soil		
Arsenic	10	Site-Specific Background Concentration in Soil, established as described in Appendix B of the FS (AMEC, 2012a).
Chromium	25	Site-Specific Background Concentration in Soil, established as described in Appendix B of the FS (AMEC, 2012a).
Cinomun	640	RBSL in Soil for Outdoor Commercial/Industrial Worker, established as described in Appendix C of the FS (AMEC, 2012a) 4
Lead	320	RBSL in Soil for Outdoor Commercial/Industrial Worker, established as described in Appendix C of the FS (AMEC, 2012a).

REVISED TABLE TABLE 1

SITE-SPECIFIC REMEDIATION GOALS -PCBs IN SOIL AND CONCRETE, AND METALS AND TPH IN SOIL

Phase V Area - Pechiney Cast Plate, Inc. Facility

3200 Fruitland Avenue Vernon, California

June 24, 2015 Rev2

Compound	Remediation Goal (mg/kg)	Explanation
TPH in Soil		
c5-c10 hydrocarbons, c6-c10 hydrocarbons, c7-c12 hydrocarbons, and Stoddard solvent	500	Screening Level for the Protection of Groundwater for TPH gasoline range (c4- c12) from the Los Angeles RWQCB Guidebook. ⁵
c10-c20 hydrocarbons and c10-c28 hydrocarbons	1000	Screening Level for the Protection of Groundwater for TPH diesel range (c13-c22) from the Los Angeles RWQCB Guidebook. ⁵
c21-c28 hydrocarbons	10,000	Screening Level for the Protection of Groundwater for TPH as residual fuel (c23-c32) from the Los Angeles RWQCB Guidebook. ⁵

Notes

- 1. Developed based on the methodology described in Appendix C of the FS (AMEC, 2012), RBSLs were used to conduct the screening-level human health risk assessment for the Site.
- 2. Based on the carcinogenic RBSL for dioxin-like PCB congeners for outdoor commercial/industrial workers (8.1 pg/g TEQ), adjusted to a target cancer risk of 10-5.
- 3. Based on the carcinogenic RBSL for dioxin-like PCB congeners for construction workers (53 pg/g TEQ), adjusted to a target
- 4. The toxicity criteria for the chromium RG is based on a 1:6 ratio of hexavalent chromium to chromium.
- 5. Los Angeles RWQCB Interim Site Assessment and Cleanup Guidebook (RWQCB Guidebook, May 1996; updated May 2004), for petroleum hydrocarbons and aromatic hydrocarbons (benzene, toluene, ethylbenzene, and total xylenes [BTEX] compounds) in soil. The selected screening levels were taken from Table 4-1 assuming distance above groundwater is 20 to 150 feet.

Abbreviations

bgs = below ground surface CFR = Code of Federal Regulations FS = Feasibility Study mg/kg = milligrams per kilogram PCBs = polychlorinated biphenyls pg/g = picograms/gram RBSL = risk-based screening level

RWQCB = California Regional Water Quality Control Board TEQ = toxic equivalent TPH = total petroleum hydrocarbons

CONCRETE SAMPLE RESULTS - PCBs

Phase II Area - Pechiney Cast Plate, Inc. Facility

3200 Fruitland Avenue Vernon, California

Phase	Sample ID	Map Reference ID	Map Grid	Date Sampled	Concrete Removal Area or Grid	Soil Removal Area	Associated Structure Number	Status	Sample Matrix	Sample Depth - Bottom (feet bls)	Sample Elevation	PCB 1016	PCB 1221	PCB 1232	PCB 1242	PCB 1248	PCB 1254	PCB 1260	PCB 1262	PCB 1268	Total PCBs (ug/kg)	Total PCB: (mg/kg)	s Remarks	Depth Remarks
Concrete	ete Samples																							
5	886-V-O-CS-001	886-CS-001	593	6/3/2014	NA	NA	886	С	CO	NA	1177	<50	<50	<50	<50	140	<50	<50	<50	<50	140	0.14	Top of structure	NA
5	886-V-O-CS-002	886-CS-002	593	6/3/2014	NA	NA	886	С	СО	NA	1177	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Side of structure pillar	NA
Stockpile	Samples																							
5	DC-429	DC-429	0	5/21/2014	NA	NA	NA	D	со	NA	0	<50000	<50000	<50000	<50000	4300000J	<50000	270000J	<50000	<50000	4570000	4570	Pink concrete from concrete stockpile generated from Northwest corner of parcel 6	NA
5	DC-430	DC-430	0	6/25/2014	NA	NA	NA	С	со	NA	0	<50	<50	<50	<50	<50	<50	<50UJ	<50	<50	<50	< 0.05	Clean concrete from Parcel 6 stockpile	NA

Note

1. Sample locations are shown on Figure 3.

Abbreviations

PCB = polychlorinated biphenyl

< = not detected at the stated reporting limit

-- = not analyzed

NA = not applicable

feet bls = feet below slab/surface

ug/kg = microgram per kilogram

mg/kg = milligram per kilogramJ = estimated concentration

UJ = analyte was not detected at a level greater than or equal to the adjusted reporting limit, however, the reported adjusted reporting limit is approximate

C = crushed on site for reuse

D = disposed

SOIL AND OTHER SAMPLE RESULTS - PCBs Phase V Area - Pechiney Cast Plate, Inc. Facility

TABLE 3

Phase		Map Reference ID	Map Grid	Date Sampled	Concrete Removal Area or Grid	Soil Removal Area	Associated Structure Number	Status	Sample Matrix	Sample Depth - Bottom (feet bls)	Sample Elevation	PCB 1016	PCB 1221	PCB 1232	PCB 1242	PCB 1248	PCB 1254	PCB 1260	PCB 1262	PCB 1268	Total PCBs (ug/kg)	Total PCBs (mg/kg)	Remarks	Depth Remarks
Soil and O	other Samples 886-V-O-SS-001	886-SS-001	593	6/10/2014	NA NA	NA	886	V	so	4	174	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Sample beneath structure footprint	NA
5	908-V-P/S-SS-001	908-SS-001	585	6/24/2014	NA NA	NA NA	908	V	so	3	175	<50	<50	<50	<50	<50	79	<50	<50	<50	79	0.079	Collected beneath structure footprint, Parcel 6	NA NA
5	925-V-R/R-SS-001	925-SS-001	594	7/9/2014	NA NA	NA	925	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Collected after ballast was cleaned out; Parcel 6	NA NA
5	925-V-R/R-SS-002	925-SS-002	604	7/9/2014	NA	NA	925	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	(Rail Spurs) Collected after ballast was cleaned out; Parcel 6	NA
5	925-V-R/R-SS-003	925-SS-003	613	7/9/2014	NA	NA	925	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	(Rail Spurs) Collected after ballast was cleaned out; Parcel 6	NA
5	925-V-R/R-SS-004	925-SS-004	623	7/9/2014	NA	NA	925	V	so	2	176	<50	<50	<50	<50	530	<50	110	<50	<50	640	0.64	(Rail Spurs) Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-005	925-SS-005	612	7/9/2014	NA	NA	925	V	SO	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-006	925-SS-006	622	7/9/2014	NA	NA	925	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-007	925-SS-007	631	7/9/2014	NA	NA	925	V	SO	2	176	<51	<51	<51	<51	<51	<51	<51	<51	<51	<51	<0.051	Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-008	925-SS-008	669	8/4/2014	NA	NA	925	V	so	1	177	<50	<50	<50	<50	66	<50	<50	<50	<50	66	0.066	Beneath rail line, in front of Gate	NA
5	925-V-R/R-SS-009	925-SS-009	660	8/4/2014	NA	NA	925	V/E	so	1	177	<50	<50	<50	<50	91	<50	51J	<50	<50	142	0.142	Beneath rail line, in front of Gate	NA
5	925-V-R/R-SS-010	925-SS-010	660	8/11/2014	NA	NA	925	V	so	2	176	<51	<51	<51	<51	<51	<51	<51	<51	<51	<51	<0.051	Verification sample for SS-009 soil removal	North Sidewall
5	925-V-R/R-SS-011	925-SS-011	660	8/11/2014	NA	NA	925	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Verification sample for SS-009 soil removal	East Sidewall
5	925-V-R/R-SS-012	925-SS-012	660	8/11/2014	NA	NA	925	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Verification sample for SS-009 soil removal	West Sidewall
5	925-V-R/R-SS-013	925-SS-013	660	8/11/2014	NA	NA	925	٧	SO	3	175	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Verification sample for SS-009 soil removal	Bottom
5	925-V-R/R-SS-014	925-SS-014	660	8/11/2014	NA	NA	925	V	so	3	175	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Verification sample for SS-009 soil removal	Bottom
5	925-V-R/R-SS-015	925-SS-015	660	8/11/2014	NA	NA	925	V	so	3	175	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Verification sample for SS-009 soil removal area	Bottom
5	#1056	#1056	638	5/22/2014	NA	NA	NA	V/E	so	0.75	177.25	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	West parcel, soil, greenish colored, TPH odor	NA
5	#1057	#1057	629	5/22/2014	NA	NA	NA	V/E	so	0.75	177.25	<50	<50	<50	<50	140	550	440	<50	<50	1130	1.13	West parcel, soil, brown/black colored, no observable odor, sediment	NA
5	#1058	#1058	620	5/22/2014	NA	NA	NA	V/E	SO	0.75	177.25	<50	<50	<50	<50	72	<50	<50	<50	<50	72	0.072	West parcel, soil, reddish rust below pavement	NA
5	#1059	#1059	593	5/22/2014	NA	NA	NA	V/E	so	0.75	177.25	<50	<50	<50	<50	73	<50	<50	<50	<50	73	0.073	West parcel, gray slag material below pavement	NA
5	#1060	#1060	620	5/22/2014	NA	NA	NA	V/E	so	0.75	177.25	<50	<50	<50	<50	73	<50	<50	<50	<50	73	0.073	West parcel, soil, dark gray, some odor observable (potential hydrocarbon)	NA

SOIL AND OTHER SAMPLE RESULTS - PCBs Phase V Area - Pechiney Cast Plate, Inc. Facility

Phase	Sample ID	Map Reference ID	Map Grid	Date Sampled	Concrete Removal Area or Grid	Soil Removal Area	Associated Structure Number	Status	Sample Matrix	Sample Depth - Bottom (feet bls)	Sample Elevation	PCB 1016	PCB 1221	PCB 1232	PCB 1242	PCB 1248	PCB 1254	PCB 1260	PCB 1262	PCB 1268	Total PCBs (ug/kg)	Total PCBs (mg/kg)	Remarks	Depth Remarks
5	#1066	#1066	667	5/29/2014	NA	NA	NA	D	so	1	177	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<0.5	Resinous, black material around pipe	NA
5	#1068	#1068	639	5/29/2014	NA	NA	NA	V/E	so	NA	1177	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Debris pit, dark gray soil	West Sidewall
5	#1070	#1070	667	5/29/2014	NA	NA	NA	D	so	0.5	177.5	<50	<50	<50	<50	490	<50	<50	<50	<50	490	0.49	Black soil from pit that contained debris with a burned appearance (not burned in place)	NA
5	#1071	#1071	658	5/29/2014	NA	NA	NA	V/E	so	1	177	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Side wall of area that contained debris that appeared burned (not burned in place)	NA
5	#1072	#1072	658	5/29/2014	NA	NA	NA	V/E	so	0	178	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	White, chalky material from debris pit	NA
5	#1099	#1099	611	6/4/2014	NA	NA	NA	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1100	#1100	620	6/4/2014	NA	NA	NA	V	so	2	176	<51	<51	<51	<51	<51	<51	<51	<51	<51	<51	<0.051	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1101	#1101	620	6/4/2014	NA	NA	NA	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1102	#1102	629	6/4/2014	NA	NA	NA	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1103	#1103	629	6/4/2014	NA	NA	NA	V	so	2	176	<51	<51	<51	<51	560	<51	100	<51	<51	660	0.66	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1104	#1104	638	6/4/2014	NA	NA	NA	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1105	#1105	639	6/4/2014	NA	NA	NA	٧	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1106	#1106	648	6/4/2014	NA	NA	NA	V	SO	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1107	#1107	639	6/4/2014	NA	NA	NA	V	SO	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1108	#1108	639	6/4/2014	NA	NA	NA	V	SO	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1109	#1109	630	6/4/2014	NA	NA	NA	V/E	so	2	176	<51	<51	<51	<51	<51	<51	730	<51	<51	730	0.73	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1110	#1110	630	6/4/2014	NA	NA	NA	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1111	#1111	630	6/4/2014	NA	NA	NA	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1112	#1112	630	6/4/2014	NA	NA	NA	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1113	#1113	621	6/4/2014	NA	NA	NA	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1114	#1114	621	6/4/2014	NA	NA	NA	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1115	#1115	611	6/4/2014	NA	NA	NA	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA

SOIL AND OTHER SAMPLE RESULTS - PCBs

Phase V Area - Pechiney Cast Plate, Inc. Facility

3200 Fruitland Avenue Vernon, California

Phase	Sample ID	Map Reference ID	Map Grid	Date Sampled	Concrete Removal Area or Grid	Soil Removal Area	Associated Structure Number	Status	Sample Matrix	Sample Depth - Bottom (feet bls)	Sample Elevation	PCB 1016	PCB 1221	PCB 1232	PCB 1242	PCB 1248	PCB 1254	PCB 1260	PCB 1262	PCB 1268	Total PCBs (ug/kg)	Total PCBs (mg/kg)	Remarks	Depth Remarks
5	#1116	#1116	640	6/5/2014	NA	NA	NA	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA
5	#1117	#1117	649	6/5/2014	NA	NA	NA	V	so	2	176	<50	<50	<50	<50	120	<50	<50	<50	<50	120	0.12	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA
5	#1118	#1118	648	6/5/2014	NA	NA	NA	V/E	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA
5	#1119	#1119	649	6/5/2014	NA	NA	NA	V	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA
5	#1120	#1120	648	6/5/2014	NA	NA	NA	V/E	so	2	176	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA
5	#1121	#1121	648	6/5/2014	NA	NA	NA	V	so	2	176	<51	<51	<51	<51	150	<51	<51	<51	<51	150	0.15	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA
5	#1332	#1332-5	667	8/11/2014	NA	NA	NA	V	so	5	173	<50	<50	<50	<50	64	<50	<50	<50	<50	64	0.064	Verification sample for removal of #1332	NA
5	908-V-P/S-O-001	908-S-001	585	6/10/2014	NA	NA	908	D	ot	NA	1177	<500	<500	<500	<500	6000	<500	2100	<500	<500	8100	8.1	Black, oily sediment within structure	NA
Stockpile	Samples																							
5	#1067	#1067	0	5/29/2014	NA	NA	NA	D	so	NA	0	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Stockpile sample of material removed from debris pit	NA
5	#1069	#1069	0	5/29/2014	NA	NA	NA	D	so	NA	0	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Stockpile sample of material from debris pit, brownish soil	NA
5	#1073	#1073	0	5/29/2014	NA	NA	NA	D	so	NA	0	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<0.05	Stockpile sample from debris pit containing glass and brick layer	NA
5	#1228	#1228	0	7/2/2014	NA	NA	NA	D	so	NA	0	<50	<50	<50	<50	77	<50	<50	<50	<50	77	0.077	Parcel 6, white material from stockpile	NA

Note

1. Other (ot) samples are shown on Figure 5. Soil (so) samples are shown on Figures 4 and 5.

PCB = polychlorinated biphenyl

so = soil

ot = other type of sample

< = not detected at the stated reporting limit

-- = not analyzed

NA = not applicable

feet bls = feet below slab/surface

ug/kg = microgram per kilogram

mg/kg = milligram per kilogram

J = estimated concentration
D = disposed

E = excavated

V = verification

V/E = verification sample but excavated

TABLE 4 REVISED TABLE

SOIL AND OTHER SAMPLE RESULTS - TPH

Phase V Area - Pechiney Cast Plate, Inc. Facility

3200 Fruitland Avenue Vernon, California

Phase	Sample ID	Map Reference ID	Map Grid	Date Sampled	Concrete Removal Area or Grid	Soil Removal Area	Associated Structure Number	Status	Sample Matrix	Sample Depth Bottom (feet bls)	Sample Elevation	TPH as gas	TPH as diesel	TPH as motor oil	TPH Total	Remarks	Depth Remarks
Soil and Other	Samples		•			•		•		_		1			1		
5	925-V-R/R-SS-001	925-SS-001	594	7/9/2014	NA	NA	925	V	so	2	176	<4.9	<4.9	<4.9	<5	Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-002	925-SS-002	604	7/9/2014	NA	NA	925	V	so	2	176	<5.1	<5.1	<5.1	<5	Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-003	925-SS-003	613	7/9/2014	NA	NA	925	V	SO	2	176	<5	<5	< 5	<5	Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-004	925-SS-004	623	7/9/2014	NA	NA	925	V	so	2	176	<5	16	94	120	Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-005	925-SS-005	612	7/9/2014	NA	NA	925	V	so	2	176	<5	<5	< 5	<5	Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-006	925-SS-006	622	7/9/2014	NA	NA	925	V	so	2	176	<5	<5	<5	<5	Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-007	925-SS-007	631	7/9/2014	NA	NA	925	V	so	2	176	<5	150	254	410	Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-008	925-SS-008	669	8/4/2014	NA	NA	925	V	so	1	177	<4.9	<4.9	40.3	50	Beneath rail line, in front of Gate	NA
5	925-V-R/R-SS-009	925-SS-009	660	8/4/2014	NA	NA	925	V/E	so	1	177	<25	<25	38	85	Beneath rail line, in front of Gate	NA

TABLE 4 REVISED TABLE

SOIL AND OTHER SAMPLE RESULTS - TPH

Phase V Area - Pechiney Cast Plate, Inc. Facility

3200 Fruitland Avenue Vernon, California

					1			1					. — —				
Phase	Sample ID	Map Reference I	ID Map Grid	Date Sampled	Concrete Removal Area or Grid	Soil Removal Area	Associated Structure Number	Status	Sample Matrix	Sample Depth Bottom (feet bls)	Sample Elevation	TPH as gas	TPH as diesel	TPH as motor oil	TPH Total	Remarks	Depth Remarks
5	#1056	#1056	638	5/22/2014	NA	NA	NA	V/E	so	0.75	177.25	<50	527	1340	2000	West parcel, soil, greenish colored, TPH odor	NA
5	#1060	#1060	620	5/22/2014	NA	NA	NA	V/E	so	0.75	177.25	<49	1278	4220	5500	West parcel, soil, dark gray, some odor observable (potential hydrocarbon)	NA
5	#1066	#1066	667	5/29/2014	NA	NA	NA	D	so	1	177	<10000	35000	206000	240000	Resinous, black material around pipe	NA
5	#1068	#1068	639	5/29/2014	NA	NA	NA	V/E	so	NA	1177	<1000	8100	20100	31000	Debris pit, dark gray soil	West Sidewall
5	#1070	#1070	667	5/29/2014	NA	NA	NA	D	so	0.5	177.5	<25	130	866	990	Black soil from pit that contained debris with a burned appearance (not burned in place)	NA
5	#1071	#1071	658	5/29/2014	NA	NA	NA	V/E	so	1	177	<5	<5	118.2	120	Side wall of area that contained debris that appeared burned (not burned in place)	NA
5	#1072	#1072	658	5/29/2014	NA	NA	NA	V/E	so	0	178	<4.9	<4.9	25.7	41	White, chalky material from debris pit	NA
5	#1099	#1099	611	6/4/2014	NA	NA	NA	V	so	2	176	<5	40	320	360	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1100	#1100	620	6/4/2014	NA	NA	NA	V	so	2	176	<4.9	<4.9	44.5	53	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1101	#1101	620	6/4/2014	NA	NA	NA	V	so	2	176	<5	17.3	26.2	54	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA

REVISED TABLE TABLE 4

SOIL AND OTHER SAMPLE RESULTS - TPH

Phase V Area - Pechiney Cast Plate, Inc. Facility

3200 Fruitland Avenue Vernon, California

								Ttooditt	o roportou ii	milligrams per ki	logiam (mg/kg	1/					
Phase	Sample ID	Map Reference I	D Map Grid	Date Sampled	Concrete Removal Area or Grid	Soil Removal Area	Associated Structure Number	Status	Sample Matrix	Sample Depth - Bottom (feet bls)	Sample Elevation	TPH as gas	TPH as diesel	TPH as motor oil	TPH Total	Remarks	Depth Remarks
5	#1102	#1102	629	6/4/2014	NA	NA	NA	V	SO	2	176	<5	<5	<5	<5	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1103	#1103	629	6/4/2014	NA	NA	NA	V	SO	2	176	<25	<25	321	360	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1104	#1104	638	6/4/2014	NA	NA	NA	V	so	2	176	<5	46.6	180	230	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1105	#1105	639	6/4/2014	NA	NA	NA	V	so	2	176	<4.9	117	132	260	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1106	#1106	648	6/4/2014	NA	NA	NA	V	so	2	176	<5	<5	<5	<5	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1107	#1107	639	6/4/2014	NA	NA	NA	V	so	2	176	<4.9	<4.9	<4.9	<5	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1108	#1108	639	6/4/2014	NA	NA	NA	V	so	2	176	<4.9	<4.9	<4.9	<5	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1109	#1109	630	6/4/2014	NA	NA	NA	V/E	so	2	176	<4.9	16.8	224	240	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1110	#1110	630	6/4/2014	NA	NA	NA	V	so	2	176	<5.1	<5.1	<5.1	<5	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1111	#1111	630	6/4/2014	NA	NA	NA	V	so	2	176	<4.9	<4.9	<4.9	<5	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA

TABLE 4 REVISED TABLE

SOIL AND OTHER SAMPLE RESULTS - TPH

Phase V Area - Pechiney Cast Plate, Inc. Facility

3200 Fruitland Avenue Vernon, California

Phase	Sample ID	Map Reference ID	Map Grid	Date	Concrete Removal	Soil Removal	Associated Structure	Status	Sample	Sample Depth - Bottom (feet	Sample	TPH as	TPH as	TPH as	TPH Total	Remarks	Depth Remarks
		.,		Sampled	Area or Grid	Area	Number		Matrix	bls)	Elevation	gas	diesel	motor oil			
5	#1112	#1112	630	6/4/2014	NA	NA	NA	V	SO	2	176	<5	<5	<5	<5	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1113	#1113	621	6/4/2014	NA	NA	NA	V	so	2	176	<5	<5	11.8	23	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1114	#1114	621	6/4/2014	NA	NA	NA	V	so	2	176	<4.9	93	331	420	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1115	#1115	611	6/4/2014	NA	NA	NA	V	so	2	176	<5	<5	<5	<5	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1116	#1116	640	6/5/2014	NA	NA	NA	V	so	2	176	<4.9	<4.9	<4.9	<5	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA
5	#1117	#1117	649	6/5/2014	NA	NA	NA	V	so	2	176	<5	<5	<5	<5	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA
5	#1118	#1118	648	6/5/2014	NA	NA	NA	V/E	so	2	176	<5.1	<5.1	147.4	150	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA
5	#1119	#1119	649	6/5/2014	NA	NA	NA	V	so	2	176	<4.9	<4.9	<4.9	<5	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA
5	#1120	#1120	648	6/5/2014	NA	NA	NA	V/E	so	2	176	<5	20	221.9	240	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA

TABLE 4 REVISED TABLE

SOIL AND OTHER SAMPLE RESULTS - TPH

Phase V Area - Pechiney Cast Plate, Inc. Facility

3200 Fruitland Avenue Vernon, California

Results reported in milligrams per kilogram (mg/kg)

Phase	Sample ID	Map Reference ID	Map Grid	Date Sampled	Concrete Removal Area or Grid	Soil Removal Area	Associated Structure Number	Status	Sample Matrix	Sample Depth - Bottom (feet bls)	Sample Elevation	TPH as gas	TPH as diesel	TPH as motor oil	TPH Total	Remarks	Depth Remarks
5	#1121	#1121	648	6/5/2014	NA	NA	NA	V	so	2	176	<4.9	<4.9	12.6	21	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA
5	908-V-P/S-O-001	908-S-001	585	6/10/2014	NA	NA	908	D	ot	NA	1177	130	2032	4075	6200	Black, oily sediment within structure	NA
Stockpile Sample	es	•	•	•			•					•	•	•	•		
5	#1067	#1067	0	5/29/2014	NA	NA	NA	D	so	NA	0	854	2070	1907	4800	Stockpile sample of material removed from debris pit	NA
5	#1069	#1069	0	5/29/2014	NA	NA	NA	D	so	NA	0	<5	19	147	170	Stockpile sample of material from debris pit, brownish soil	NA
5	#1073	#1073	0	5/29/2014	NA	NA	NA	D	so	NA	0	<25	<25	142	180	Stockpile sample from debris pit containing glass and brick layer	NA

Note

1. Other (ot) samples are shown on Figure 5. Soil (so) samples are shown on Figures 4 and 5.

<u>Abbreviations</u>

so = soil

< = not detected at the stated reporting limit

-- = not analyzed

NA = not applicable

feet bls = feet below slab/surface

D = disposed

V = verification

V/E = verification sample but excavated

SOIL AND OTHER SAMPLE RESULTS - METALS Phase V Area - Pechiney Cast Plate, Inc. Facility

Phase	Sample ID	Map Refere ID	nce Map Grid		Concrete d Removal Area or Grid	Soil Removal d Area	Associated Structure Number	Status	Sample Matrix	Sample Depth - Bottom (feet bls)	Sample Elevation	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium, Total	Cobalt	Copper	Lead and Compounds (inorganic)	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Mercury	Remarks	Depth Remarks
Soil and C	ther Samples		<u> </u>			II.	1	<u> </u>					l	II				II		l	<u> </u>									
5	925-V-R/R-SS-001	925-SS-00	1 594	7/9/2014	NA	NA	925	V	SO	2	176	<0.769UJ	1.14	143	0.387	<0.513	18.1	12.5	17.8	2	<0.256	13.2	<0.769	<0.256	<0.769UJ	40.6	58.5	<0.0833	Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-002	925-SS-00	2 604	7/9/2014	NA	NA	925	V	so	2	176	<0.739UJ	<0.739	125	0.368	<0.493	16.6	11.3	15.9	2.03	<0.246	11.5	<0.739	<0.246	<0.739UJ	38.5	52.4	<0.082	Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-003	925-SS-00	3 613	7/9/2014	NA	NA	925	V	so	2	176	<0.725UJ	<0.725	117	0.34	<0.483	16.1	10.7	15	2.91	<0.242	11.3	<0.725	<0.242	<0.725UJ	35.5	50.8	<0.082	Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-004	925-SS-00	4 623	7/9/2014	NA	NA	925	V	so	2	176	<0.728UJ	5.08	151	0.481	<0.485	46.4	31.7	116	90.3	0.589	45.3	<0.728	<0.243	<0.728UJ	39.7	237	0.171	Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-005	925-SS-00	5 612	7/9/2014	NA	NA	925	V	so	2	176	<0.714UJ	<0.714	123	0.376	<0.476	17.3	11.5	16.6	2.06	<0.238	12	<0.714	<0.238	<0.714UJ	40.2	49.8	<0.0794	Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-006	925-SS-00	6 622	7/9/2014	NA	NA	925	V	so	2	176	<0.761UJ	<0.761	120	0.347	<0.508	16.4	10.9	15	3.22	<0.254	11.5	<0.761	<0.254	<0.761UJ	37.4	54.3	<0.082	Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-007	925-SS-00	7 631	7/9/2014	NA	NA	925	V	so	2	176	<0.765UJ	<0.765	113	0.336	<0.51	16.3	10.6	17.4	6.45	0.299	12.7	<0.765	<0.255	<0.765UJ	35.8	54	<0.0862	Collected after ballast was cleaned out; Parcel 6 (Rail Spurs)	NA
5	925-V-R/R-SS-008	925-SS-00	8 669	8/4/2014	NA	NA	925	V	so	1	177	<0.758	3.52	154	0.316	<0.505	26.6	14.2	103	47.8	0.458	48.3	<0.758	<0.253	<0.758	28.1	195	0.101	Beneath rail line, in front of Gate	NA
5	925-V-R/R-SS-009	925-SS-00	9 660	8/4/2014	NA	NA	925	V/E	so	1	177	<0.754	10.3	729	0.321	13.9	190	31.8	538	798	8.33	103	<0.754	<0.251	<0.754	36.7	2670	1.97	Beneath rail line, in front of Gate	NA
5	925-V-R/R-SS-010	925-SS-01	0 660	8/11/2014	NA	NA	925	V	so	2	176	2.73	1.96	357	0.353	1.47	19.1	11.6	73.8	151	<0.248	20.1	<0.743	<0.248	<0.743	32.5	1350	0.162	Verification sample for SS-009 soil removal	North Sidewall
5	925-V-R/R-SS-011	925-SS-01	1 660	8/11/2014	NA	NA	925	V	so	2	176	<0.75	1.45	223	0.324	1.02	18.8	11.7	56	124	0.436	15.1	<0.75	<0.25	<0.75	30.5	734	<0.0806	Verification sample for SS-009 soil removal	East Sidewall
5	925-V-R/R-SS-012	925-SS-01	2 660	8/11/2014	NA	NA	925	V	so	2	176	1.93	3.11	307	0.354	1.46	23	12.9	91.7	199	0.807	20.7	<0.739	<0.246	<0.739	33.7	1100	0.195	Verification sample for SS-009 soil removal	West Sidewall
5	925-V-R/R-SS-013	925-SS-01	3 660	8/11/2014	NA	NA	925	V	so	3	175	<0.739	<0.739	178	0.36	<0.493	17.2	12	40.2	61.3	<0.246	14.1	<0.739	<0.246	<0.739	33.9	338	<0.0806	Verification sample for SS-009 soil removal	Bottom
5	925-V-R/R-SS-014	925-SS-01	4 660	8/11/2014	NA	NA	925	V	SO	3	175	<0.735	<0.735	185	0.312	<0.49	15	10.1	40	64.5	<0.245	12.3	<0.735	<0.245	<0.735	29	403	0.957	Verification sample for SS-009 soil removal	Bottom
5	925-V-R/R-SS-015	925-SS-01	5 660	8/11/2014	NA	NA	925	V	SO	3	175	<0.739	1.07	150	0.336	<0.493	15.2	10.9	27.5	86.5	<0.246	12.8	<0.739	<0.246	<0.739	32.2	153	0.236	Verification sample for SS-009 soil removal area	Bottom
5	#1056	#1056	638	5/22/2014	NA	NA	NA	V/E	SO	0.75	177.25	15.1	3.2	142	0.342	<0.5	30.1	12.6	70.2	377	0.74	89.5	<0.75	<0.25	<0.75	50.6	328	0.364	West parcel, soil, greenish colored, TPH odor	NA
5	#1057	#1057	629	5/22/2014	NA	NA	NA	V/E	so	0.75	177.25	<0.75	3.04	71.5	<0.25	0.798	46.5	7.06	80.8	104	11.2	53.8	<0.75	<0.25	<0.75	22.8	346	<0.0833	West parcel, soil, brown/black colored, no observable odor, sediment	NA
5	#1058	#1058	620	5/22/2014	NA	NA	NA	V/E	so	0.75	177.25	<0.75	21.9	80.2	<0.25	<0.5	58.2	28.4	262	18.5	0.676	116	<0.75	<0.25	<0.75	19.3	78.4	<0.0794	West parcel, soil, reddish rust below pavement	NA
5	#1059	#1059	593	5/22/2014	NA	NA	NA	V/E	so	0.75	177.25	<0.735	39.5	56.5	<0.245	<0.49	108	25.5	438	45.5	2.45	416	<0.735	<0.245	<0.735	2.47	57.9	<0.0847	West parcel, gray slag material below pavement	NA
5	#1060	#1060	620	5/22/2014	NA	NA	NA	V/E	SO	0.75	177.25	<0.743	7.37	129	0.328	<0.495	27.1	13.1	83.9	20.2	0.359	109	<0.743	<0.248	<0.743	31.5	86.7	<0.082	West parcel, soil, dark gray, some odor observable (potential hydrocarbon)	NA
5	#1066	#1066	667	5/29/2014	NA	NA	NA	D	so	1	177	<0.758UJ	<0.758	0.644	<0.253	<0.505	0.334	<0.253	<0.505	1.5	<0.253	0.288	<0.758	<0.253	<0.758	0.314J+	27.4	<0.0794	Resinous, black material around pipe	NA
5	#1068	#1068	639	5/29/2014	NA	NA	NA	V/E	SO	NA	1177	<0.746UJ	15.4	148	0.286	<0.498	42.4	15.8	101	79.5	0.721	301	<0.746	<0.249	<0.746	28.5J+	222	0.262	Debris pit, dark gray soil	West Sidewall
5	#1070	#1070	667	5/29/2014	NA	NA	NA	D	so	0.5	177.5	293J-	39.9	3520	<0.251	16.5	123	38.4	1250	13500	4.51	405	<0.754	<0.251	<0.754	22.4J+	12500		Black soil from pit that contained debris with a burned appearance (not burned in place)	NA

SOIL AND OTHER SAMPLE RESULTS - METALS Phase V Area - Pechiney Cast Plate, Inc. Facility

Phase	Sample ID	Map Reference	Map Grid	Date Sampleo	Concrete Removal	Soil Removal	Associated Structure		Samp Matri		Sample Elevation	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium, Total	Cobalt	Copper	Lead and Compounds	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Mercury	Remarks	Depth Remarks
			Grid		Area or Grid	Area	Number		Iviatri	bls)	Elevation						Total			(inorganic)										
5	#1071	#1071	658	5/29/2014	NA	NA	NA	V/E	so	1	177	24.8J-	14	688	<0.248	4.18	138	33.8	933	1610	5.69	276	<0.743	<0.248	<0.743	25.4J+	2650	0.735	Side wall of area that contained debris that appeared burned (not burned in place)	NA
5	#1072	#1072	658	5/29/2014	NA	NA	NA	V/E	so	0	178	<0.754UJ	<0.754	79.7	0.36	<0.503	9.92	2.61	75.7	88.5	0.522	18.8	<0.754	<0.251	<0.754	3.47J+	233	0.392	White, chalky material from debris pit	NA
5	#1099	#1099	611	6/4/2014	NA	NA	NA	V	so	2	176	<0.75UJ	2.76	150	0.388	<0.5	18.5	11.9	29.8J+	59.7J	<0.25	17.4	<0.75	<0.25	<0.75	36.6	81.9J+	<0.0833	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1100	#1100	620	6/4/2014	NA	NA	NA	V	so	2	176	<0.758UJ	6.37	146	0.382	<0.505	19.9	13.2	63.7J+	37.3J	0.311	44.6	<0.758	<0.253	<0.758	35.1	123J+	<0.0847	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1101	#1101	620	6/4/2014	NA	NA	NA	V	so	2	176	<0.746UJ	1.14	166	0.449	<0.498	20.5	13.8	21.4J+	2.57J	0.278	15.9	<0.746	<0.249	<0.746	41.5	65.8J+	0.0993	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1102	#1102	629	6/4/2014	NA	NA	NA	V	so	2	176	<0.725UJ	1.5	157	0.439	<0.483	19.4	13.3	19.5J+	1.72J	<0.242	14.7	<0.725	<0.242	<0.725	40.1	63.2J+	<0.0694	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1103	#1103	629	6/4/2014	NA	NA	NA	V	so	2	176	<0.728UJ	3.1	117	0.263	0.534	20.5	8.77	75.2J+	94.6J	0.371	42.8	<0.728	<0.243	<0.728	27.9	271J+	0.31	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1104	#1104	638	6/4/2014	NA	NA	NA	V	so	2	176	<0.739UJ	0.981	107	0.317	2	20.2	11.2	55J+	30.8J	1.26	15.1	<0.739	<0.246	<0.739	30.1	334J+	0.185	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1105	#1105	639	6/4/2014	NA	NA	NA	V	so	2	176	<0.75UJ	1.53	135	0.391	<0.5	17.6	11.7	19.1J+	4.64J	<0.25	13.7	<0.75	<0.25	<0.75	35.6	69.1J+	<0.0781	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1106	#1106	648	6/4/2014	NA	NA	NA	V	so	2	176	<0.732UJ	0.817	125	0.392	<0.488	16.6	11.3	16.1J+	1.6J	<0.244	12.1	<0.732	<0.244	<0.732	35.5	52.8J+	<0.082	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1107	#1107	639	6/4/2014	NA	NA	NA	V	so	2	176	<0.735UJ	0.925	132	0.388	<0.49	17.4	11.7	16.5J+	1.68J	<0.245	12.7	<0.735	<0.245	<0.735	37.5	54.3J+	<0.0847	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1108	#1108	639	6/4/2014	NA	NA	NA	V	so	2	176	<0.732UJ	1.21	155	0.371	<0.488	16.6	11.5	23J+	10.6J	<0.244	13.7	<0.732	<0.244	<0.732	34.8	110J+	0.342	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1109	#1109	630	6/4/2014	NA	NA	NA	V/E	so	2	176	<0.743UJ	24.6	142	0.405	<0.495	22.1	10.8	108J+	97.2J	0.437	18.3	<0.743	<0.248	<0.743	32.9	256J+	0.396	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1110	#1110	630	6/4/2014	NA	NA	NA	V	so	2	176	<0.761UJ	2.16	137	0.394	<0.508	18	12	24.1J+	8.11J	<0.254	13.5	<0.761	<0.254	<0.761	36.3	69.6J+	<0.0862	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1111	#1111	630	6/4/2014	NA	NA	NA	V	so	2	176	<0.735UJ	1.54	138	0.387	<0.49	17.8	12.3	21.4J+	8.37J	<0.245	14	<0.735	<0.245	<0.735	36.6	67.3J+	0.0803	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1112	#1112	630	6/4/2014	NA	NA	NA	V	so	2	176	<0.728UJ	1.08	120	0.371	<0.485	15.6	10.7	16.3J+	2.65J	<0.243	11.9	<0.728	<0.243	<0.728	34.1	54.3J+	<0.0758	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1113	#1113	621	6/4/2014	NA	NA	NA	V	so	2	176	<0.743UJ	1.32	165	0.423	<0.495	19.2	12.4	63.7J+	1.76J	<0.248	17.5	<0.743	<0.248	<0.743	39.1	62.5J+	<0.0781	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1114	#1114	621	6/4/2014	NA	NA	NA	V	so	2	176	<0.761UJ	2.33	178	0.384	<0.508	20.9	12.9	108J+	98.5J	<0.254	35.5	<0.761	<0.254	<0.761	36.3	113J+	<0.0781	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1115	#1115	611	6/4/2014	NA	NA	NA	V	so	2	176	<0.739UJ	1.21	147	0.405	<0.493	18.3	12.6	18.9J+	2.4J	<0.246	14	<0.739	<0.246	<0.739	38.5	61.7J+	<0.082	Soil removal verification samples for Parcel 6, samples collected after the removal of #1066 to #1073 and #1056 to #1060	NA
5	#1116	#1116	640	6/5/2014	NA	NA	NA	V	so	2	176	<0.728	1.08	109	0.33	<0.485	13.9	10.1	14.6	1.67	<0.243	10.4	<0.728	<0.243	<0.728	31.7	50.5	<0.0806	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA
5	#1117	#1117	649	6/5/2014	NA	NA	NA	V	so	2	176	<0.75	1.38	137	0.326	<0.5	17.8	10.7	24.6	30.4	<0.25	13.4	<0.75	<0.25	<0.75	33	110	<0.0833	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA
5	#1118	#1118	648	6/5/2014	NA	NA	NA	V/E	so	2	176	27.6	2.43	245	0.369	<0.49	20.9	12.3	156	613	<0.245	18.8	<0.735	<0.245	<0.735	35.7	297	0.0942	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA
5	#1119	#1119	649	6/5/2014	NA	NA	NA	V	so	2	176	<0.725	0.933	143	0.334	<0.483	16	12.4	22	12.5	<0.242	12.7	<0.725	<0.242	<0.725	32.9	116	<0.0847	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA
5	#1120	#1120	648	6/5/2014	NA	NA	NA	V/E	so	2	176	<0.739	2.01	536	0.293	<0.493	18.1	9.53	1060	679	0.72	17.3	<0.739	<0.246	<0.739	29.6	633	0.165	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA

SOIL AND OTHER SAMPLE RESULTS - METALS Phase V Area - Pechiney Cast Plate, Inc. Facility

Phase	Sample ID	Map Reference	e Map Grid	Date Sampled	Concrete Removal	Soil Removal	Associated Structure	Status	Sample Matrix	Sample Depth - Bottom (feet	Sample Elevation	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium, Total	Cobalt	Copper	Lead and Compounds	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Mercury	Remarks	Depth Remarks
		10	Grid		Area or Grid	Area	Number		Watrix	bls)	Elevation						Total			(inorganic)										
5	#1121	#1121	648	6/5/2014	NA	NA	NA	V	so	2	176	<0.743	1.56	129	0.352	<0.495	17.5	12.8	20.4	11.1	<0.248	16.2	<0.743	<0.248	<0.743	32.4	64.7	<0.0833	Soil removal verification samples for Parcel 6, samples collected after the removal for #1066 to #1073 and #1056 to #1060	NA
5	#1126	#1126	648	6/16/2014	NA	NA	NA	٧	so	3	175	<0.773UJ	1.43	117	0.314	<0.515	13.9	10.2	13.8	0.905J-	<0.258	10.4	<0.773	<0.258	<0.773UJ	31	45.2J-	<0.0794	Parcel 6, verification sample for removal of #1118 and #1120	NA
5	#1127	#1127	648	6/16/2014	NA	NA	NA	٧	so	3	175	<0.754UJ	1.35	119	0.326	<0.503	14.7	10.9	16.2	0.703J-	0.39	11	<0.754	<0.251	<0.754UJ	32.4	50.2J-	<0.0833	Parcel 6, verification sample for removal of #1118 and #1120	NA
5	#1128	#1128	639	6/16/2014	NA	NA	NA	V	SO	3	175	<0.735UJ	1.97	121	0.327	<0.49	15	10.7	14.6	1.38J-	<0.245	10.9	<0.735	<0.245	<0.735UJ	32.5	50.6J-	<0.0806	Parcel 6, verification sample for removal of #1118 and #1120	NA
5	#1129	#1129	640	6/16/2014	NA	NA	NA	V	\$0	2.5	175.5	<0.761UJ	2.27	122	0.34	<0.508	15.7	10.9	20.8	5.76J-	<0.254	11.6	<0.761	<0.254	<0.761UJ	33.4	55.9J-	0.121	Parcel 6, verifications sample for removal of #1109	NA
5	#1130	#1130	639	6/16/2014	NA	NA	NA	V	SO	2.5	175.5	<0.758UJ	1.09	113	0.314	<0.505	13.9	10	14	1.06J-	<0.253	10.3	<0.758	<0.253	<0.758UJ	30.8	44.8J-	<0.0794	Parcel 6, verifications sample for removal of #1109	NA
5	#1131	#1131	630	6/16/2014	NA	NA	NA	V	SO	3	175	<0.75UJ	9.99	121	0.341	<0.5	15.4	10.6	28.3	22.8J-	<0.25	11.7	<0.75	<0.25	<0.75UJ	32.8	75.1J-	<0.0833	Parcel 6, verifications sample for removal of #1109	NA
5	#1162	#1162	657	6/24/2014	NA	NA	NA	V	SO	3	175	<0.743UJ	<0.743	116	0.351	<0.495	16.4	10.1	20.7	15.8	<0.248	19.8	<0.743	<0.248	<0.743UJ	35.9	95.7	<0.0877	Verification sample for the soil removal of metal- impacted material, Parcel 6, fill material	NA
5	#1163	#1163	657	6/24/2014	NA	NA	NA	V	SO	3	175	<0.761UJ	<0.761	123	0.391	<0.508	17.7	11.3	16.3	2.86	<0.254	12.2	<0.761	<0.254	<0.761UJ	40.8	55.3	<0.082	Verification sample for the soil removal of metal- impacted material, Parcel 6, fill material	NA
5	#1164	#1164	657	6/24/2014	NA	NA	NA	V	SO	3	175	<0.721UJ	0.796	109	0.293	<0.481	16.3	9.31	36.3	48.2	<0.24	19.5	<0.721	<0.24	<0.721UJ	31.5	129	0.117	Verification sample for the soil removal of metal- impacted material, Parcel 6, fill material	NA
5	#1165	#1165	657	6/24/2014	NA	NA	NA	V	SO	3	175	<0.758UJ	1.95	158	0.341	1.92	22.1	11.5	37	45.8	0.378	28.4	<0.758	<0.253	<0.758UJ	35.6	771	0.128	Verification sample for the soil removal of metal- impacted material, Parcel 6, fill material	NA
5	#1166	#1166	656	6/24/2014	NA	NA	NA	V	SO	3	175	<0.761UJ	2	125	0.324	<0.508	23.1	10.6	52.9	94.5	<0.254	44.9	<0.761	<0.254	<0.761UJ	33.2	198	0.125	Verification sample for the soil removal of metal- impacted material, Parcel 6, fill material	NA
5	#1167	#1167	656	6/24/2014	NA	NA	NA	٧	so	3	175	<0.75UJ	3.87	130	0.387	0.623	20.8	11.9	35.4	18.3	<0.25	39.5	<0.75	<0.25	<0.75UJ	39.4	240	0.231	Verification sample for the soil removal of metal- impacted material, Parcel 6, fill material	NA
5	#1168	#1168	647	6/24/2014	NA	NA	NA	V	so	3	175	<0.773UJ	<0.773	141	0.452	<0.515	20	12.7	19.5	2.19	<0.258	14.1	<0.773	<0.258	<0.773UJ	45	60.6	<0.0862	Verification sample for the soil removal of metal- impacted material, Parcel 6, fill material	NA
5	#1169	#1169	647	6/24/2014	NA	NA	NA	V	SO	3	175	<0.739UJ	<0.739	140	0.422	<0.493	21.9	12.6	26.2	13	0.269	24.2	<0.739	<0.246	<0.739UJ	43.7	80.1	<0.082	Verification sample for the soil removal of metal- impacted material, Parcel 6, fill material	NA
5	#1170	#1170	638	6/24/2014	NA	NA	NA	V	SO	3	175	<0.739UJ	<0.739	135	0.422	<0.493	19.3	12.4	18.8	3.29	<0.246	14.5	<0.739	<0.246	<0.739UJ	44.2	61.1	<0.0781	Verification sample for the soil removal of metal- impacted material, Parcel 6, fill material	NA
5	#1171	#1171	656	6/24/2014	NA	NA	NA	V	SO	3	175	<0.743UJ	<0.743	133	0.403	<0.495	19.8	12.1	22.3	13.5	<0.248	14.9	<0.743	<0.248	<0.743UJ	41.8	84	<0.082	Verification sample for the soil removal of metal- impacted material, Parcel 6, fill material	NA
5	#1172	#1172	656	6/24/2014	NA	NA	NA	V	SO	3	175	<0.743UJ	1.06	66.6	0.383	<0.495	17.6	9.65	19.7	35.1	<0.248	14.1	<0.743	<0.248	<0.743UJ	33.6	75	<0.0877	Verification sample for the soil removal of metal- impacted material, Parcel 6, fill material	NA
5	#1173	#1173	647	6/24/2014	NA	NA	NA	V	SO	3	175	<0.75UJ	<0.75	116	0.369	<0.5	16.8	10.8	15	1.72	<0.25	11.6	<0.75	<0.25	<0.75UJ	38.5	50.4	<0.0806	Verification sample for the soil removal of metal- impacted material, Parcel 6, fill material	NA
5	#1174	#1174	647	6/24/2014	NA	NA	NA	٧	so	3	175	<0.75UJ	<0.75	139	0.439	<0.5	20	12.8	18.8	2.18	<0.25	14	<0.75	<0.25	<0.75UJ	44.3	60.9	<0.0833	Verification sample for the soil removal of metal- impacted material, Parcel 6, fill material	NA
5	#1175	#1175	638	6/24/2014	NA	NA	NA	V	so	3	175	<0.739UJ	<0.739	137	0.413	<0.493	19.9	12.4	26.4	8.86	0.271	14.3	<0.739	<0.246	<0.739UJ	43	76.8	<0.0847	Verification sample for the soil removal of metal- impacted material, Parcel 6, fill material	NA
5	#1176	#1176	637	6/24/2014	NA	NA	NA	٧	so	3	175	<0.754UJ	<0.754	148	0.45	<0.503	20.8	13.2	21.2	3.82	0.28	23.6	<0.754	<0.251	<0.754UJ	46	76.3	<0.082	Verification sample for the soil removal of metal- impacted material, Parcel 6, fill material	NA
5	#1247	#1247	665	7/15/2014	NA	NA	NA	٧	so	2.5	175.5	<0.746	0.76	315	0.364	<0.498	35.1	10.7	19.8	9.66	<0.249	12.5	<0.746	<0.249	<0.746	34.7	75.7	0.11	Verification sample for southern extent of metals impacted area	NA
5	#1248	#1248	665	7/15/2014	NA	NA	NA	V	SO	2.5	175.5	<0.746	<0.746	137	0.396	<0.498	18.6	11.8	18.9	5.25	<0.249	13	<0.746	<0.249	<0.746	38.2	69.3	<0.0847	Verificaiton sample for southern extent of metals impacted area	NA

SOIL AND OTHER SAMPLE RESULTS - METALS Phase V Area - Pechiney Cast Plate, Inc. Facility

3200 Fruitland Avenue Vernon, California

Phase	Sample ID	Map Reference ID	Map Grid	Date Sampled	Concrete Removal Area or Grid	Soil Removal Area	Associated Structure Number	Status	Sample Matrix	Sample Depth - Bottom (feet bls)	Sample Elevation	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium, Total	Cobalt	Copper	Lead and Compounds (inorganic)	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Mercury	Remarks	Depth Remarks
5	#1249	#1249	666	7/15/2014	NA	NA	NA	٧	SO	2.5	175.5	<0.754	<0.754	143	0.387	<0.503	17.5	11.7	21.7	13.3	<0.251	13.4	<0.754	<0.251	<0.754	37.6	78.7	<0.0833	Verificaiton sample for southern extent of metals impacted area	NA
5	#1332	#1332	667	8/4/2014	NA	NA	NA	Е	so	3	175	<0.743	11.3	205	0.323	1.23	25.3	15.3	109	197	1.24	29.7	<0.743	<0.248	<0.743	32.1	386	0.358	Verification sample beneath beneath RCRA Stockpile	NA
5	#1332	#1332-5	667	8/11/2014	NA	NA	NA	V	so	5	173	<0.75	1.62	74.6	0.251	<0.5	16.1	9.42	16.2	1.56	<0.25	14	<0.75	<0.25	<0.75	25.5	42.4	<0.0833	Verification sample for removal of #1332	NA
5	#1333	#1333	658	8/4/2014	NA	NA	NA	V	so	3	175	<0.743	5.08	159	0.347	<0.495	17.2	13.4	46.9	35.5	0.288	42.6	<0.743	<0.248	<0.743	37.4	129	<0.0794	Verification sample beneath RCRA Stockpile	NA
5	908-V-P/S-O-001	908-S-001	585	6/10/2014	NA	NA	908	D	ot	NA	1177	2.2	25	559	<0.254	16	113	30.7	4620	1390	27.6	91.8	<0.761	1	<0.761	38.6	3310	0.167	Black, oily sediment within structure	NA
Stockpile	Samples																													
5	#1067	#1067	0	5/29/2014	NA	NA	NA	D	so	NA	0	<0.739UJ	12.7	153	<0.246	<0.493	41.6	14.2	117	161	0.629	113	<0.739	<0.246	<0.739	23J+	266	0.155	Stockpile sample of material removed from debris pit	NA
5	#1069	#1069	0	5/29/2014	NA	NA	NA	D	so	NA	0	<0.746UJ	2.67	166	0.356	<0.498	20.8	11.9	108	109	0.398	21.6	<0.746	<0.249	<0.746	33.4J+	166	0.153	Stockpile sample of material from debris pit, brownish soil	NA
5	#1073	#1073	0	5/29/2014	NA	NA	NA	D	so	NA	0	2050J-	32.8	202	<0.249	<0.498	21.5	9.66	198	16100	1.29	25.2	<0.746	0.617	<0.746	27.3J+	389	0.297	Stockpile sample from debris pit containing glass and brick layer	NA
5	#1228	#1228	0	7/2/2014	NA	NA	NA	D	so	NA	0	<0.743	<0.743	30.3	0.386	<0.495	5.5	2.67	32.1	25.5	0.348	12.3	<0.743	0.571	<0.743	5.93	47.6	<0.0833	Parcel 6, white material from stockpile	NA

Note

1. Other (ot) samples are shown on Figure 5. Soil (so) samples are shown on Figures 4 and 5.

Abbreviations

so = so

ot = other type of sample

< = not detected at the stated reporting limit

-- = not analyzed

NA = not applicable

feet bls = feet below slab/surface

J = estimated concentration

J+= estimated concentration potentially biased high J-= estimated concentration potentially biased low

UJ = analyte was not detected at a level greater than or equal to the adjusted reporting limit, however, the reported adjusted reporting limit is approximate

D = disposed

E = excavated

V/E = verification sample but excavated

QUANTITIES OF MATERIALS REMOVED FROM THE FACILITY Phase V Area - Pechiney Cast Plate, Inc. Facility

3200 Fruitland Avenue

200 Fruitiand Avenue Vernon, California

Waste Contents ¹	Type of Waste ²	Quantity ³	Quantity Units	Disposal Facility	Location
				Kelterite Corporation; Nu-Way	
Asphalt	Non-Hazardous Waste Solid	2969	tons	Arrow Land Reclamation	California
Ballast	Non-Hazardous Waste Solid	1981	tons	Chiquita Canyon Landfill	California
	TSCA-Hazardous Waste, PCBs,				
PCB-Impacted Concrete	Solid ⁴	461	tons	US Ecology	Nevada
	Non-RCRA Hazardous Waste				
Lead-Impacted Soil	Solid	4105	tons	South Yuma County Landfill	Arizona
Lead-Impacted Soil	RCRA Hazardous Waste	737	tons	US Ecology	Nevada
Railroad Ties	Non-Hazardous Waste Solid	80	tons	Simi Valley Landfill	California

Notes

- 1. Waste stream generated during below grade demolition and soil removal activities.
- 2. Federal and/or California Waste Category.
- 3. Quantities are approximate. Final quantities will be provided in the last completion report.
- 4. Bulk PCB Remediation Waste.

Abbreviations

TSCA = Toxic Substances Control Act

RCRA = Resource Conservation and Recovery Act

PCBs = polychlorinated biphenyls

FIGURES

-15

REMOVED PIPE

APPROXIMATE LOCATION OF BURIED STRUCTURE (LEFT IN PLACE)

ate: 9/29/2014 2:53:32 PM , Plotted by: pat. herring

Figure

PHASE V - PIPE REMOVALS BELOW GRADE DEMOLITION & SOIL EXCAVATION PECHINEY CAST PLATE, INC., FACILITY 3200 FRUITLAND AVENUE, VERNON, CALIFORNIA

APPENDIX A

Laboratory Reports and Chain-of-Custody Documentation – Soil, Concrete and Other Media

CALSCIENCE

WORK ORDER NUMBER: 14-05-1652

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate Facility /

0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

Horman

Approved for release on 05/23/2014 by:

Stephen Nowak Project Manager

ResultLink >

Email your PM >

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Former Pechiney Cast Plate Facility / 0106270030

Work Order Number: 14-05-1652

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA 8015B (M) C6-C44 (Solid). 4.2 EPA 6010B/7471A CAC Title 22 Metals (Solid). 4.3 EPA 7471A Mercury (Solid). 4.4 EPA 8082 PCB Aroclors (Solid).	11 11 19 33 35
5	Quality Control Sample Data5.1 MS/MSD5.2 LCS/LCSD	43 43 48
6	Sample Analysis Summary	53
7	Glossary of Terms and Qualifiers	54
8	Chain of Custody/Sample Receipt Form	55

Work Order Narrative

Work Order: 14-05-1652 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 05/21/14. They were assigned to Work Order 14-05-1652.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-1652

Project Name: Former Pechiney Cast Plate Facility /

0106270030

PO Number:

Date/Time 05/21/14 18:35

Received:

17 Number of Containers:

Attn: Linda Conlan

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
#1047	14-05-1652-1	05/21/14 08:01	1	Solid
#1048	14-05-1652-2	05/21/14 08:02	1	Solid
#1049	14-05-1652-3	05/21/14 08:03	1	Solid
#1050	14-05-1652-4	05/21/14 08:05	1	Solid
#1051	14-05-1652-5	05/21/14 08:06	1	Solid
#1052-15	14-05-1652-6	05/21/14 09:50	1	Solid
#1053-15	14-05-1652-7	05/21/14 10:04	1	Solid
#1054-13.5	14-05-1652-8	05/21/14 10:15	1	Solid
#1055-13.5	14-05-1652-9	05/21/14 10:26	1	Solid
DC-429	14-05-1652-10	05/21/14 11:47	1	Other
885-IV-R/R-SS-001	14-05-1652-11	05/21/14 13:13	1	Solid
885-IV-R/R-SS-002	14-05-1652-12	05/21/14 13:16	1	Solid
885-IV-R/R-SS-003	14-05-1652-13	05/21/14 13:19	1	Solid
885-IV-R/R-SS-004	14-05-1652-14	05/21/14 13:22	1	Solid
885-IV-R/R-SS-005	14-05-1652-15	05/21/14 13:25	1	Solid
885-IV-R/R-SS-006	14-05-1652-16	05/21/14 13:29	1	Solid
885-IV-R/R-SS-007	14-05-1652-17	05/21/14 13:31	1	Solid

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-1652

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 05/21/14

Attn: Linda Conlan Page 1 of 6

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1047 (14-05-1652-1)						
Arsenic	5.64		0.750	mg/kg	EPA 6010B	EPA 3050B
Barium	128		0.500	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.458		0.250	mg/kg	EPA 6010B	EPA 3050B
Chromium	17.9		0.250	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.9		0.250	mg/kg	EPA 6010B	EPA 3050B
Copper	25.4		0.500	mg/kg	EPA 6010B	EPA 3050B
Lead	11.0		0.500	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.354		0.250	mg/kg	EPA 6010B	EPA 3050B
Nickel	13.3		0.250	mg/kg	EPA 6010B	EPA 3050B
Vanadium	38.4		0.250	mg/kg	EPA 6010B	EPA 3050B
Zinc	843		1.00	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.0969		0.0847	mg/kg	EPA 7471A	EPA 7471A Total
#1048 (14-05-1652-2)						
Arsenic	95.9		0.761	mg/kg	EPA 6010B	EPA 3050B
Barium	134		0.508	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.413		0.254	mg/kg	EPA 6010B	EPA 3050B
Chromium	19.2		0.254	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.3		0.254	mg/kg	EPA 6010B	EPA 3050B
Copper	29.5		0.508	mg/kg	EPA 6010B	EPA 3050B
Lead	17.9		0.508	mg/kg	EPA 6010B	EPA 3050B
Nickel	14.3		0.254	mg/kg	EPA 6010B	EPA 3050B
Vanadium	38.2		0.254	mg/kg	EPA 6010B	EPA 3050B
Zinc	87.7		1.02	mg/kg	EPA 6010B	EPA 3050B
#1049 (14-05-1652-3)						
Arsenic	28.9		0.781	mg/kg	EPA 6010B	EPA 3050B
Barium	110		0.521	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.352		0.260	mg/kg	EPA 6010B	EPA 3050B
Chromium	17.7		0.260	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.5		0.260	mg/kg	EPA 6010B	EPA 3050B
Copper	25.7		0.521	mg/kg	EPA 6010B	EPA 3050B
Lead	33.8		0.521	mg/kg	EPA 6010B	EPA 3050B
Nickel	12.6		0.260	mg/kg	EPA 6010B	EPA 3050B
Vanadium	34.2		0.260	mg/kg	EPA 6010B	EPA 3050B
Zinc	136		1.04	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-1652

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 05/21/14

Attn: Linda Conlan Page 2 of 6

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1050 (14-05-1652-4)						
Arsenic	1.79		0.765	mg/kg	EPA 6010B	EPA 3050B
Barium	145		0.510	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.502		0.255	mg/kg	EPA 6010B	EPA 3050B
Chromium	17.4		0.255	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.1		0.255	mg/kg	EPA 6010B	EPA 3050B
Copper	21.2		0.510	mg/kg	EPA 6010B	EPA 3050B
Lead	2.45		0.510	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.386		0.255	mg/kg	EPA 6010B	EPA 3050B
Nickel	13.3		0.255	mg/kg	EPA 6010B	EPA 3050B
Vanadium	39.5		0.255	mg/kg	EPA 6010B	EPA 3050B
Zinc	57.6		1.02	mg/kg	EPA 6010B	EPA 3050B
#1051 (14-05-1652-5)						
Arsenic	13.9		0.758	mg/kg	EPA 6010B	EPA 3050B
Barium	115		0.505	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.391		0.253	mg/kg	EPA 6010B	EPA 3050B
Chromium	18.3		0.253	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.1		0.253	mg/kg	EPA 6010B	EPA 3050B
Copper	51.8		0.505	mg/kg	EPA 6010B	EPA 3050B
Lead	31.0		0.505	mg/kg	EPA 6010B	EPA 3050B
Nickel	13.7		0.253	mg/kg	EPA 6010B	EPA 3050B
Vanadium	32.8		0.253	mg/kg	EPA 6010B	EPA 3050B
Zinc	167		1.01	mg/kg	EPA 6010B	EPA 3050B
#1052-15 (14-05-1652-6)						
Aroclor-1248	200		50	ug/kg	EPA 8082	EPA 3540C
#1053-15 (14-05-1652-7)						
Aroclor-1248	1200		250	ug/kg	EPA 8082	EPA 3540C
Aroclor-1260	50		50	ug/kg	EPA 8082	EPA 3540C
#1054-13.5 (14-05-1652-8)						
Aroclor-1248	780		51	ug/kg	EPA 8082	EPA 3540C
Aroclor-1260	53		51	ug/kg	EPA 8082	EPA 3540C
#1055-13.5 (14-05-1652-9)						
Aroclor-1248	140		51	ug/kg	EPA 8082	EPA 3540C
DC-429 (14-05-1652-10)						
Aroclor-1248	4300000		500000	ug/kg	EPA 8082	EPA 3540C
Aroclor-1260	270000		50000	ug/kg	EPA 8082	EPA 3540C

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-1652

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 05/21/14

Attn: Linda Conlan Page 3 of 6

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
885-IV-R/R-SS-001 (14-05-1652-11)						
Arsenic	11.2		0.732	mg/kg	EPA 6010B	EPA 3050B
Barium	11.2		0.732	mg/kg	EPA 6010B	EPA 3050B
	0.302		0.466		EPA 6010B	EPA 3050B
Beryllium				mg/kg		
Chromium	17.6		0.244	mg/kg	EPA 6010B	EPA 3050B
Cobalt	9.87		0.244	mg/kg	EPA 6010B	EPA 3050B
Copper	24.9		0.488	mg/kg	EPA 6010B	EPA 3050B
Lead	44.9		0.488	mg/kg	EPA 6010B	EPA 3050B
Nickel	11.4		0.244	mg/kg	EPA 6010B	EPA 3050B
Vanadium	32.1		0.244	mg/kg	EPA 6010B	EPA 3050B
Zinc	115		0.976	mg/kg	EPA 6010B	EPA 3050B
Aroclor-1248	61		50	ug/kg	EPA 8082	EPA 3540C
885-IV-R/R-SS-002 (14-05-1652-12)						
Arsenic	2.59		0.758	mg/kg	EPA 6010B	EPA 3050B
Barium	126		0.505	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.357		0.253	mg/kg	EPA 6010B	EPA 3050B
Cadmium	0.772		0.505	mg/kg	EPA 6010B	EPA 3050B
Chromium	17.8		0.253	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.4		0.253	mg/kg	EPA 6010B	EPA 3050B
Copper	23.1		0.505	mg/kg	EPA 6010B	EPA 3050B
Lead	26.0		0.505	mg/kg	EPA 6010B	EPA 3050B
Nickel	12.3		0.253	mg/kg	EPA 6010B	EPA 3050B
Vanadium	35.6		0.253	mg/kg	EPA 6010B	EPA 3050B
Zinc	221		1.01	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-1652

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 05/21/14

Linda Conlan Page 4 of 6 Attn:

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
885-IV-R/R-SS-003 (14-05-1652-13)						
Arsenic	6.35		0.743	mg/kg	EPA 6010B	EPA 3050B
Barium	118		0.495	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.597		0.248	mg/kg	EPA 6010B	EPA 3050B
Chromium	101		0.248	mg/kg	EPA 6010B	EPA 3050B
Cobalt	9.59		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper	375		0.495	mg/kg	EPA 6010B	EPA 3050B
Lead	43.8		0.495	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.548		0.248	mg/kg	EPA 6010B	EPA 3050B
Nickel	21.6		0.248	mg/kg	EPA 6010B	EPA 3050B
Vanadium	31.7		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc	929		0.990	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.0832		0.0806	mg/kg	EPA 7471A	EPA 7471A Total
C25-C28	6.8		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	16		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	16		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	10		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	60		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
Aroclor-1248	510		50	ug/kg	EPA 8082	EPA 3540C
Aroclor-1260	430		50	ug/kg	EPA 8082	EPA 3540C
Aroclor-1268	85		50	ug/kg	EPA 8082	EPA 3540C

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-1652

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 05/21/14

Attn: Linda Conlan Page 5 of 6

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
85-IV-R/R-SS-004 (14-05-1652-14)						
Arsenic	4.43		0.758	mg/kg	EPA 6010B	EPA 3050B
Barium	129		0.505	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.352		0.253	mg/kg	EPA 6010B	EPA 3050B
Chromium	16.2		0.253	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.0		0.253	mg/kg	EPA 6010B	EPA 3050B
Copper	26.2		0.505	mg/kg	EPA 6010B	EPA 3050B
Lead	41.3		0.505	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.331		0.253	mg/kg	EPA 6010B	EPA 3050B
Nickel	13.0		0.253	mg/kg	EPA 6010B	EPA 3050B
Vanadium	35.2		0.253	mg/kg	EPA 6010B	EPA 3050B
Zinc	152		1.01	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.0911		0.0847	mg/kg	EPA 7471A	EPA 7471A Total
C15-C16	5.4		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	7.3		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	12		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	11		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	55		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
85-IV-R/R-SS-005 (14-05-1652-15)						
Arsenic	5.60		0.750	mg/kg	EPA 6010B	EPA 3050B
Barium	122		0.500	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.374		0.250	mg/kg	EPA 6010B	EPA 3050B
Chromium	19.0		0.250	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.8		0.250	mg/kg	EPA 6010B	EPA 3050B
Copper	63.6		0.500	mg/kg	EPA 6010B	EPA 3050B
Lead	11.1		0.500	mg/kg	EPA 6010B	EPA 3050B
Nickel	12.2		0.250	mg/kg	EPA 6010B	EPA 3050B
Vanadium	32.3		0.250	mg/kg	EPA 6010B	EPA 3050B
Zinc	182		1.00	mg/kg	EPA 6010B	EPA 3050B
C29-C32	6.0		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	6.4		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	17		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
Aroclor-1260	61		50	ug/kg	EPA 8082	EPA 3540C

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-1652

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 05/21/14

Attn: Linda Conlan Page 6 of 6

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
885-IV-R/R-SS-006 (14-05-1652-16)						
Arsenic	4.50		0.743	ma/ka	EPA 6010B	EPA 3050B
				mg/kg		
Barium	105		0.495	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.303		0.248	mg/kg	EPA 6010B	EPA 3050B
Chromium	13.5		0.248	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.0		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper	15.3		0.495	mg/kg	EPA 6010B	EPA 3050B
Lead	1.54		0.495	mg/kg	EPA 6010B	EPA 3050B
Nickel	10.2		0.248	mg/kg	EPA 6010B	EPA 3050B
Vanadium	30.2		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc	50.0		0.990	mg/kg	EPA 6010B	EPA 3050B
885-IV-R/R-SS-007 (14-05-1652-17)						
Arsenic	21.9		0.714	mg/kg	EPA 6010B	EPA 3050B
Barium	176		0.476	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.390		0.238	mg/kg	EPA 6010B	EPA 3050B
Chromium	19.2		0.238	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.6		0.238	mg/kg	EPA 6010B	EPA 3050B
Copper	42.8		0.476	mg/kg	EPA 6010B	EPA 3050B
Lead	175		0.476	mg/kg	EPA 6010B	EPA 3050B
Nickel	14.1		0.238	mg/kg	EPA 6010B	EPA 3050B
Vanadium	36.6		0.238	mg/kg	EPA 6010B	EPA 3050B
Zinc	248		0.952	mg/kg	EPA 6010B	EPA 3050B

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/21/14 14-05-1652 EPA 3550B EPA 8015B (M)

mg/kg

Units:

Page 1 of 8

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
885-IV-R/R-SS-001	14-05-1652-11-A	05/21/14 13:13	Solid	GC 49	05/22/14	05/22/14 13:41	140522B01
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		75	61-	-145			

05/21/14

14-05-1652

EPA 3550B

EPA 8015B (M)

Analytical Report

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

C6-C44 Total

n-Octacosane

<u>Surrogate</u>

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received:
Work Order:
Preparation:
Method:

Units: mg/kg Page 2 of 8

1.00

Qualifiers

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
885-IV-R/R-SS-002	14-05-1652-12-A	05/21/14 13:16	Solid	GC 49	05/22/14	05/22/14 13:57	140522B01
<u>Parameter</u>		Result	<u>RL</u>		DF	Qua	alifiers
C6		ND	5.0		1.00		
C7		ND	5.0		1.00		
C8		ND	5.0		1.00		
C9-C10		ND	5.0		1.00		
C11-C12		ND	5.0		1.00		
C13-C14		ND	5.0		1.00		
C15-C16		ND	5.0		1.00		
C17-C18		ND	5.0		1.00		
C19-C20		ND	5.0		1.00		
C21-C22		ND	5.0		1.00		
C23-C24		ND	5.0		1.00		
C25-C28		ND	5.0		1.00		
C29-C32		ND	5.0		1.00		
C33-C36		ND	5.0		1.00		
C37-C40		ND	5.0		1.00		
C41-C44		ND	5.0		1.00		

5.0

61-145

Control Limits

ND

88

Rec. (%)

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/21/14 14-05-1652 EPA 3550B EPA 8015B (M)

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 8

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
885-IV-R/R-SS-003		14-05-1652-13-A	05/21/14 13:19	Solid	GC 49	05/22/14	05/22/14 14:14	140522B01
Comment(s):	- The total concer	ntration includes individual car	bon range cond	entrations (est	timated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
C6			ND	5.0		1.00		
C7			ND	5.0		1.00		
C8			ND	5.0		1.00		
C9-C10			ND	5.0		1.00		
C11-C12			ND	5.0		1.00		
C13-C14			ND	5.0		1.00		
C15-C16			ND	5.0		1.00		
C17-C18			ND	5.0		1.00		
C19-C20			ND	5.0		1.00		
C21-C22			ND	5.0		1.00		
C23-C24			ND	5.0		1.00		
C25-C28			6.8	5.0		1.00		
C29-C32			16	5.0		1.00		
C33-C36			16	5.0		1.00		
C37-C40			10	5.0		1.00		
C41-C44			ND	5.0		1.00		
C6-C44 Total			60	5.0		1.00		
<u>Surrogate</u>			Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
n-Octacosane			98	61-	145			

RL: Reporting Limit. DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

14-05-1652 EPA 3550B EPA 8015B (M)

05/21/14

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 4 of 8

Client Sample Number 885-IV-R/R-SS-004		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
		14-05-1652-14-A	05/21/14 13:22	Solid	GC 49	05/22/14	05/22/14 14:31	140522B01
Comment(s):	- The total concentration i	includes individual car	bon range cond	centrations (est	imated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
C6			ND	5.0		1.00		
C7			ND	5.0		1.00		
C8			ND	5.0		1.00		
C9-C10			ND	5.0		1.00		
C11-C12			ND	5.0		1.00		
C13-C14			ND	5.0		1.00		
C15-C16			5.4	5.0		1.00		
C17-C18			ND	5.0		1.00		
C19-C20			ND	5.0		1.00		
C21-C22			ND	5.0		1.00		
C23-C24			ND	5.0		1.00		
C25-C28			7.3	5.0		1.00		
C29-C32			12	5.0		1.00		
C33-C36			11	5.0		1.00		
C37-C40			ND	5.0		1.00		
C41-C44			ND	5.0		1.00		
C6-C44 Total			55	5.0		1.00		
<u>Surrogate</u>			Rec. (%)	Con	trol Limits	Qualifiers		
n-Octacosane			109	61-1	145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

14-05-1652 EPA 3550B EPA 8015B (M)

05/21/14

Units: mg/kg Page 5 of 8

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
885-IV-R/R-SS-	005	14-05-1652-15-A	05/21/14 13:25	Solid	GC 49	05/22/14	05/22/14 14:48	140522B01
Comment(s):	- The total concentration	includes individual car	bon range cond	centrations (est	timated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
C6			ND	5.0		1.00		
C7			ND	5.0		1.00		
C8			ND	5.0		1.00		
C9-C10			ND	5.0		1.00		
C11-C12			ND	5.0		1.00		
C13-C14			ND	5.0		1.00		
C15-C16			ND	5.0		1.00		
C17-C18			ND	5.0		1.00		
C19-C20			ND	5.0		1.00		
C21-C22			ND	5.0		1.00		
C23-C24			ND	5.0		1.00		
C25-C28			ND	5.0		1.00		
C29-C32			6.0	5.0		1.00		
C33-C36			6.4	5.0		1.00		
C37-C40			ND	5.0		1.00		
C41-C44			ND	5.0		1.00		
C6-C44 Total			17	5.0		1.00		
Surrogate			Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
n-Octacosane			110	61-	145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

05/21/14 14-05-1652 EPA 3550B EPA 8015B (M)

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 6 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
885-IV-R/R-SS-006	14-05-1652-16-A	05/21/14 13:29	Solid	GC 49	05/22/14	05/22/14 15:05	140522B01
<u>Parameter</u>		Result	RL	=	<u>DF</u>	Qua	<u>alifiers</u>
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	Qualifiers		
n-Octacosane		108	61	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

05/21/14 14-05-1652 EPA 3550B EPA 8015B (M)

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 7 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix I	nstrument	Date Prepared	Date/Time Analyzed	QC Batch ID
885-IV-R/R-SS-007	14-05-1652-17-A	05/21/14 13:31	Solid (GC 49	05/22/14	05/22/14 15:21	140522B01
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
C6		ND	5.0		1.00		
C7		ND	5.0		1.00		
C8		ND	5.0		1.00		
C9-C10		ND	5.0		1.00		
C11-C12		ND	5.0		1.00		
C13-C14		ND	5.0		1.00		
C15-C16		ND	5.0		1.00		
C17-C18		ND	5.0		1.00		
C19-C20		ND	5.0		1.00		
C21-C22		ND	5.0		1.00		
C23-C24		ND	5.0		1.00		
C25-C28		ND	5.0		1.00		
C29-C32		ND	5.0		1.00		
C33-C36		ND	5.0		1.00		
C37-C40		ND	5.0		1.00		
C41-C44		ND	5.0		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	Contr	rol Limits	Qualifiers		
n-Octacosane		132	61-14	45			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

 Date Received:
 05/21/14

 Work Order:
 14-05-1652

 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

 Units:
 mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 8 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-920	N/A	Solid	GC 49	05/22/14	05/22/14 12:19	140522B01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		91	61-	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

05/21/14 14-05-1652 EPA 3050B EPA 6010B

Units: mg/kg Page 1 of 14

Project: Former Pechiney	Cast Plate Facility /	0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1047	14-05-1652-1-A	05/21/14 08:01	Solid	ICP 7300	05/21/14	05/22/14 12:05	140521L04
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>alifiers</u>
Antimony		ND	(0.750	1.00		
Arsenic		5.64	(0.750	1.00		
Barium		128	(0.500	1.00		
Beryllium		0.458	(0.250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		17.9	(0.250	1.00		
Cobalt		11.9	(0.250	1.00		
Copper		25.4	(0.500	1.00		
Lead		11.0	(0.500	1.00		
Molybdenum		0.354	(0.250	1.00		
Nickel		13.3	(0.250	1.00		
Selenium		ND	(0.750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	(0.750	1.00		
Vanadium		38.4	(0.250	1.00		
Zinc		843	1	1.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Zinc

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received: Work Order: Preparation: Method: 05/21/14 14-05-1652 EPA 3050B EPA 6010B

Units: mg/kg Page 2 of 14

1.02

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1048	14-05-1652-2-A	05/21/14 08:02	Solid	ICP 7300	05/21/14	05/22/14 12:10	140521L04
Parameter		Result	<u>_</u>	<u> </u>	<u>DF</u>	Qua	alifiers
Antimony		ND	().761	1.02		
Arsenic		95.9	().761	1.02		
Barium		134	(0.508	1.02		
Beryllium		0.413	().254	1.02		
Cadmium		ND	(0.508	1.02		
Chromium		19.2	().254	1.02		
Cobalt		12.3	(0.254	1.02		
Copper		29.5	(0.508	1.02		
Lead		17.9	(0.508	1.02		
Molybdenum		ND	(0.254	1.02		
Nickel		14.3	().254	1.02		
Selenium		ND	().761	1.02		
Silver		ND	().254	1.02		
Thallium		ND	().761	1.02		
Vanadium		38.2	().254	1.02		

1.02

87.7

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

05/21/14 14-05-1652 EPA 3050B EPA 6010B

mg/kg Page 3 of 14

Project: Former Pechiney Cast Plate Facility / 0106270030

ima OC Patah

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1049	14-05-1652-3-A	05/21/14 08:03	Solid	ICP 7300	05/21/14	05/22/14 12:11	140521L04
<u>Parameter</u>		Result]	RL	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.781	1.04		
Arsenic		28.9	(0.781	1.04		
Barium		110	(0.521	1.04		
Beryllium		0.352	(0.260	1.04		
Cadmium		ND	(0.521	1.04		
Chromium		17.7	(0.260	1.04		
Cobalt		10.5	(0.260	1.04		
Copper		25.7	(0.521	1.04		
Lead		33.8	(0.521	1.04		
Molybdenum		ND	(0.260	1.04		
Nickel		12.6	(0.260	1.04		
Selenium		ND	(0.781	1.04		
Silver		ND	(0.260	1.04		
Thallium		ND	(0.781	1.04		
Vanadium		34.2	(0.260	1.04		
Zinc		136		1.04	1.04		

mg/kg

Analytical Report

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate Facility / 0106270030

 Date Received:
 05/21/14

 Work Order:
 14-05-1652

 Preparation:
 EPA 3050B

 Method:
 EPA 6010B

Units:

Page 4 of 14

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1050	14-05-1652-4-A	05/21/14 08:05	Solid	ICP 7300	05/21/14	05/22/14 12:12	140521L04
Parameter		Result		<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.765	1.02		
Arsenic		1.79	(0.765	1.02		
Barium		145	(0.510	1.02		
Beryllium		0.502	(0.255	1.02		
Cadmium		ND	(0.510	1.02		
Chromium		17.4	(0.255	1.02		
Cobalt		12.1	(0.255	1.02		
Copper		21.2	(0.510	1.02		
Lead		2.45	(0.510	1.02		
Molybdenum		0.386	(0.255	1.02		
Nickel		13.3	(0.255	1.02		
Selenium		ND	(0.765	1.02		
Silver		ND	(0.255	1.02		
Thallium		ND	(0.765	1.02		
Vanadium		39.5	(0.255	1.02		
Zinc		57.6		1.02	1.02		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

05/21/14 14-05-1652 EPA 3050B EPA 6010B

mg/kg

Units:

Page 5 of 14

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1051	14-05-1652-5-A	05/21/14 08:06	Solid	ICP 7300	05/21/14	05/22/14 12:13	140521L04
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.758	1.01		
Arsenic		13.9	(0.758	1.01		
Barium		115	(0.505	1.01		
Beryllium		0.391	(0.253	1.01		
Cadmium		ND	(0.505	1.01		
Chromium		18.3	(0.253	1.01		
Cobalt		10.1	(0.253	1.01		
Copper		51.8	(0.505	1.01		
Lead		31.0	(0.505	1.01		
Molybdenum		ND	(0.253	1.01		
Nickel		13.7	(0.253	1.01		
Selenium		ND	(0.758	1.01		
Silver		ND	(0.253	1.01		
Thallium		ND	(0.758	1.01		
Vanadium		32.8	(0.253	1.01		
Zinc		167		1.01	1.01		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/21/14 14-05-1652 EPA 3050B EPA 6010B

Units:

mg/kg Page 6 of 14

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
885-IV-R/R-SS-001	14-05-1652-11-A	05/21/14 13:13	Solid	ICP 7300	05/21/14	05/22/14 12:26	140521L04
<u>Parameter</u>		Result]	<u>RL</u>	<u>DF</u>	Qua	lifiers
Antimony		ND	(0.732	0.976		
Arsenic		11.2	(0.732	0.976		
Barium		112	(0.488	0.976		
Beryllium		0.302	(0.244	0.976		
Cadmium		ND	(0.488	0.976		
Chromium		17.6	(0.244	0.976		
Cobalt		9.87	(0.244	0.976		
Copper		24.9	(0.488	0.976		
Lead		44.9	(0.488	0.976		
Molybdenum		ND	(0.244	0.976		
Nickel		11.4	(0.244	0.976		
Selenium		ND	(0.732	0.976		
Silver		ND	(0.244	0.976		
Thallium		ND	(0.732	0.976		
Vanadium		32.1	(0.244	0.976		
Zinc		115	(0.976	0.976		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/21/14 14-05-1652 EPA 3050B EPA 6010B

Units: mg/kg Page 7 of 14

Dania at. Camaa an Dankin a.	· Onet Dieta Feeilie	/ 0400070000
Broiect, Former Bechine	/ Last Plate Facility	/ UTU6//UU3U
Project: Former Pechine	, Gast i late i acility	/ 0100210000

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
885-IV-R/R-SS-002	14-05-1652-12-A	05/21/14 13:16	Solid	ICP 7300	05/21/14	05/22/14 12:14	140521L04
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.758	1.01		
Arsenic		2.59	(0.758	1.01		
Barium		126	(0.505	1.01		
Beryllium		0.357	(0.253	1.01		
Cadmium		0.772	(0.505	1.01		
Chromium		17.8	(0.253	1.01		
Cobalt		11.4	(0.253	1.01		
Copper		23.1	(0.505	1.01		
Lead		26.0	(0.505	1.01		
Molybdenum		ND	(0.253	1.01		
Nickel		12.3	(0.253	1.01		
Selenium		ND	(0.758	1.01		
Silver		ND	(0.253	1.01		
Thallium		ND	(0.758	1.01		
Vanadium		35.6	(0.253	1.01		
Zinc		221	1	1.01	1.01		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

05/21/14 14-05-1652 EPA 3050B EPA 6010B

Units: mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 8 of 14

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
885-IV-R/R-SS-003	14-05-1652-13-A	05/21/14 13:19	Solid	ICP 7300	05/21/14	05/22/14 12:15	140521L04
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	(0.743	0.990		
Arsenic		6.35	(0.743	0.990		
Barium		118	(0.495	0.990		
Beryllium		0.597	(0.248	0.990		
Cadmium		ND	(0.495	0.990		
Chromium		101	(0.248	0.990		
Cobalt		9.59	(0.248	0.990		
Copper		375	(0.495	0.990		
Lead		43.8	(0.495	0.990		
Molybdenum		0.548	(0.248	0.990		
Nickel		21.6	(0.248	0.990		
Selenium		ND	(0.743	0.990		
Silver		ND	(0.248	0.990		
Thallium		ND	(0.743	0.990		
Vanadium		31.7	(0.248	0.990		
Zinc		929	(0.990	0.990		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/21/14 14-05-1652 EPA 3050B EPA 6010B

Units:

mg/kg Page 9 of 14

Project: Former Pechiney Cast Plate Facility / 0106270030

- ago o or .

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
885-IV-R/R-SS-004	14-05-1652-14-A	05/21/14 13:22	Solid	ICP 7300	05/21/14	05/22/14 12:16	140521L04
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	lifiers
Antimony		ND	(0.758	1.01		
Arsenic		4.43	(0.758	1.01		
Barium		129	(0.505	1.01		
Beryllium		0.352	(0.253	1.01		
Cadmium		ND	(0.505	1.01		
Chromium		16.2	(0.253	1.01		
Cobalt		11.0	(0.253	1.01		
Copper		26.2	(0.505	1.01		
Lead		41.3	(0.505	1.01		
Molybdenum		0.331	(0.253	1.01		
Nickel		13.0	(0.253	1.01		
Selenium		ND	(0.758	1.01		
Silver		ND	(0.253	1.01		
Thallium		ND	(0.758	1.01		
Vanadium		35.2	(0.253	1.01		
Zinc		152		1.01	1.01		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/21/14 14-05-1652 EPA 3050B EPA 6010B

Units:

mg/kg Page 10 of 14

Project: Former Pechiney Cast Plate Facility / 0106270030

/Time OC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
885-IV-R/R-SS-005	14-05-1652-15-A	05/21/14 13:25	Solid	ICP 7300	05/21/14	05/22/14 12:17	140521L04
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	(0.750	1.00		
Arsenic		5.60	(0.750	1.00		
Barium		122	(0.500	1.00		
Beryllium		0.374	(0.250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		19.0	(0.250	1.00		
Cobalt		10.8	(0.250	1.00		
Copper		63.6	(0.500	1.00		
Lead		11.1	(0.500	1.00		
Molybdenum		ND	(0.250	1.00		
Nickel		12.2	(0.250	1.00		
Selenium		ND	(0.750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	(0.750	1.00		
Vanadium		32.3	(0.250	1.00		
Zinc		182		1.00	1.00		

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

05/21/14 14-05-1652 EPA 3050B EPA 6010B

mg/kg Page 11 of 14

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
885-IV-R/R-SS-006	14-05-1652-16-A	05/21/14 13:29	Solid	ICP 7300	05/21/14	05/22/14 12:18	140521L03
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.743	0.990		
Arsenic		4.50	(0.743	0.990		
Barium		105	(0.495	0.990		
Beryllium		0.303	(0.248	0.990		
Cadmium		ND	(0.495	0.990		
Chromium		13.5	(0.248	0.990		
Cobalt		10.0	(0.248	0.990		
Copper		15.3	(0.495	0.990		
Lead		1.54	(0.495	0.990		
Molybdenum		ND	(0.248	0.990		
Nickel		10.2	(0.248	0.990		
Selenium		ND	(0.743	0.990		
Silver		ND	(0.248	0.990		
Thallium		ND	(0.743	0.990		
Vanadium		30.2	(0.248	0.990		
Zinc		50.0	(0.990	0.990		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/21/14 14-05-1652 EPA 3050B EPA 6010B

Units: mg/kg
Page 12 of 14

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
885-IV-R/R-SS-007	14-05-1652-17-A	05/21/14 13:31	Solid	ICP 7300	05/21/14	05/22/14 12:19	140521L03
Parameter		Result	اِ	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	(0.714	0.952		
Arsenic		21.9	(0.714	0.952		
Barium		176	(0.476	0.952		
Beryllium		0.390	(0.238	0.952		
Cadmium		ND	(0.476	0.952		
Chromium		19.2	(0.238	0.952		
Cobalt		11.6	(0.238	0.952		
Copper		42.8	(0.476	0.952		
Lead		175	(0.476	0.952		
Molybdenum		ND	(0.238	0.952		
Nickel		14.1	(0.238	0.952		
Selenium		ND	(0.714	0.952		
Silver		ND	(0.238	0.952		
Thallium		ND	(0.714	0.952		
Vanadium		36.6	(0.238	0.952		
Zinc		248	(0.952	0.952		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

Units:

05/21/14 14-05-1652 **EPA 3050B** EPA 6010B

mg/kg Page 13 of 14

Project: Former Pechiney Cast Plate Facility / 0106270030

05/22/14	140521L03
Date/Time Analyzed	QC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-18404	N/A	Solid	ICP 7300	05/21/14	05/22/14 11:54	140521L03
Parameter		Result	R	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	0	.750	1.00		
Arsenic		ND	0	.750	1.00		
Barium		ND	0	.500	1.00		
Beryllium		ND	0	.250	1.00		
Cadmium		ND	0	.500	1.00		
Chromium		ND	0	.250	1.00		
Cobalt		ND	0	.250	1.00		
Copper		ND	0	.500	1.00		
Lead		ND	0	.500	1.00		
Molybdenum		ND	0	.250	1.00		
Nickel		ND	0	.250	1.00		
Selenium		ND	0	.750	1.00		
Silver		ND	0	.250	1.00		
Thallium		ND	0	.750	1.00		
Vanadium		ND	0	.250	1.00		
Zinc		ND	1	.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

Units:

05/21/14 14-05-1652 EPA 3050B EPA 6010B

mg/kg

2020

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 14 of 14

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-18405	N/A	Solid	ICP 7300	05/21/14	05/22/14 11:55	140521L04
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	C	.750	1.00		
Arsenic		ND	C	0.750	1.00		
Barium		ND	C	0.500	1.00		
Beryllium		ND	C	0.250	1.00		
Cadmium		ND	C	.500	1.00		
Chromium		ND	C	0.250	1.00		
Cobalt		ND	C	0.250	1.00		
Copper		ND	C	.500	1.00		
Lead		ND	C	.500	1.00		
Molybdenum		ND	C	0.250	1.00		
Nickel		ND	C	.250	1.00		
Selenium		ND	C).750	1.00		
Silver		ND	C	.250	1.00		
Thallium		ND	C	.750	1.00		
Vanadium		ND	C	.250	1.00		
Zinc		ND	1	.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

14-05-1652 EPA 7471A Total EPA 7471A mg/kg

05/21/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1047	14-05-1652-1-A	05/21/14 08:01	Solid	Mercury 05	05/21/14	05/22/14 12:29	140521L09
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qu	alifiers
Mercury		0.0969		0.0847	1.00		
#1048	14-05-1652-2-A	05/21/14 08:02	Solid	Mercury 05	05/21/14	05/22/14 12:31	140521L09
Parameter		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0820	1.00		
#1049	14-05-1652-3-A	05/21/14 08:03	Solid	Mercury 05	05/21/14	05/22/14 12:33	140521L09
Parameter Parameter		Result		RL	<u>DF</u>	Qu	alifiers
Mercury		ND		0.0820	1.00		
#1050	14-05-1652-4-A	05/21/14 08:05	Solid	Mercury 05	05/21/14	05/22/14 12:35	140521L09
Parameter Parameter Parameter		Result		RL	<u>DF</u>	Qu	alifiers
Mercury		ND		0.0820	1.00		
#1051	14-05-1652-5-A	05/21/14 08:06	Solid	Mercury 05	05/21/14	05/22/14 12:38	140521L09
Parameter Parame		Result		RL	<u>DF</u>	Qu	alifiers
Mercury		ND		0.0833	1.00		
885-IV-R/R-SS-001	14-05-1652-11-A	05/21/14 13:13	Solid	Mercury 05	05/21/14	05/22/14 12:40	140521L09
Parameter		Result		RL	DF	Qu	alifiers
Mercury		ND		0.0794	1.00		
885-IV-R/R-SS-002	14-05-1652-12-A	05/21/14 13:16	Solid	Mercury 05	05/21/14	05/22/14 12:42	140521L09
Parameter Parameter		Result		<u>RL</u>	<u>DF</u>	Qu	alifiers
Mercury		ND		0.0877	1.00		
885-IV-R/R-SS-003	14-05-1652-13-A	05/21/14 13:19	Solid	Mercury 05	05/21/14	05/22/14 12:44	140521L09
Parameter Parameter		Result		<u>RL</u>	<u>DF</u>	Qu	alifiers
Mercury		0.0832		0.0806	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Mercury

Date Received: Work Order: Preparation: Method:

Units:

14-05-1652 EPA 7471A Total EPA 7471A mg/kg

05/21/14

Project: Former Pechiney C	Pa	Page 2 of 2					
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
885-IV-R/R-SS-004	14-05-1652-14-A	05/21/14 13:22	Solid	Mercury 05	05/21/14	05/22/14 12:47	140521L09
<u>Parameter</u>	·	Result		RL	<u>DF</u>	Qua	alifiers
Mercury		0.0911		0.0847	1.00		
885-IV-R/R-SS-005	14-05-1652-15-A	05/21/14 13:25	Solid	Mercury 05	05/21/14	05/22/14 11:33	140521L09
Parameter Parameter		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0833	1.00		
885-IV-R/R-SS-006	14-05-1652-16-A	05/21/14 13:29	Solid	Mercury 05	05/21/14	05/22/14 12:49	140521L09
Parameter Parameter		Result	-	RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0794	1.00		
885-IV-R/R-SS-007	14-05-1652-17-A	05/21/14 13:31	Solid	Mercury 05	05/21/14	05/22/14 12:56	140521L09
Parameter Parameter	·	Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0847	1.00		
Method Blank	099-16-272-248	N/A	Solid	Mercury 05	05/21/14	05/22/14 11:24	140521L09
Parameter Parameter		Result		RL	<u>DF</u>	Qua	alifiers

ND

0.0833

1.00

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

05/21/14 14-05-1652 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1052-15	14-05-1652-6-A	05/21/14 09:50	Solid	GC 31	05/21/14	05/23/14 11:54	140521L20
<u>Parameter</u>		Result	RL		DF	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		200	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Cor	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		115	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		124	50-	130			

#1053-15	14-05-1652-7-A	05/21/14 10:04	Solid GC 31	05/21/14	05/23/14 12:13	140521L20
Parameter		Result	<u>RL</u>	DF	Qu	<u>ialifiers</u>
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		50	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		111	60-125			
2,4,5,6-Tetrachloro-m-Xylene		121	50-130			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

Units:

05/21/14 14-05-1652 EPA 3540C EPA 8082

ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1053-15	14-05-1652-7-A	05/21/14 10:04	Solid	GC 31	05/21/14	05/23/14 16:21	140521L20
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Aroclor-1248		1200		250	5.00		
Surrogate		Rec. (%)		Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		110		60-125			
2,4,5,6-Tetrachloro-m-Xylene		106		50-130			

#1054-13.5	14-05-1652-8-A	05/21/14 10:15	Solid GC 31	05/21/14	05/23/14 12:33	140521L20
Parameter		Result	<u>RL</u>	<u>DF</u>	Qu	alifiers
Aroclor-1016		ND	51	1.00		
Aroclor-1221		ND	51	1.00		
Aroclor-1232		ND	51	1.00		
Aroclor-1242		ND	51	1.00		
Aroclor-1248		780	51	1.00		
Aroclor-1254		ND	51	1.00		
Aroclor-1260		53	51	1.00		
Aroclor-1262		ND	51	1.00		
Aroclor-1268		ND	51	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		112	60-125			
2,4,5,6-Tetrachloro-m-Xylene		124	50-130			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/21/14 14-05-1652 EPA 3540C EPA 8082 ug/kg

Units:

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1055-13.5	14-05-1652-9-A	05/21/14 10:26	Solid	GC 31	05/21/14	05/23/14 12:52	140521L20
<u>Parameter</u>		Result	RL		DF	Qua	<u>llifiers</u>
Aroclor-1016		ND	51		1.00		
Aroclor-1221		ND	51		1.00		
Aroclor-1232		ND	51		1.00		
Aroclor-1242		ND	51		1.00		
Aroclor-1248		140	51		1.00		
Aroclor-1254		ND	51		1.00		
Aroclor-1260		ND	51		1.00		
Aroclor-1262		ND	51		1.00		
Aroclor-1268		ND	51		1.00		
Surrogate		Rec. (%)	Con	trol Limits	Qualifiers		
Decachlorobiphenyl		116	60-1	125			
2,4,5,6-Tetrachloro-m-Xylene		124	50-1	130			

DC-429	14-05-1652-10-A	05/21/14 11:47	Other	GC 31	05/21/14	05/23/14 13:11	140521L20
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Aroclor-1016		ND		50000	1000		
Aroclor-1221		ND		50000	1000		
Aroclor-1232		ND		50000	1000		
Aroclor-1242		ND		50000	1000		
Aroclor-1254		ND		50000	1000		
Aroclor-1260		270000		50000	1000		
Aroclor-1262		ND		50000	1000		
Aroclor-1268		ND		50000	1000		
Surrogate		Rec. (%)		Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		330		60-125	1,2,7		
2,4,5,6-Tetrachloro-m-Xylene		100		50-130			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received: Work Order: Preparation: Method:

05/21/14 14-05-1652 EPA 3540C EPA 8082

Units:

ug/kg Page 4 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
DC-429	14-05-1652-10-A	05/21/14 11:47	Other	GC 31	05/21/14	05/23/14 16:02	140521L20
Parameter		Result		RL	DF	Qua	<u>lifiers</u>
Aroclor-1248		4300000		500000	10000		
Surrogate		Rec. (%)		Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		6200		60-125	1,2,7		
2,4,5,6-Tetrachloro-m-Xylene		0		50-130	1,2,6		

885-IV-R/R-SS-001	14-05-1652-11-A	05/21/14 13:13	Solid GC 31	05/21/14	05/23/14 13:30	140521L20
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifie	ers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		61	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		110	60-125			
2,4,5,6-Tetrachloro-m-Xylene		119	50-130			

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

05/21/14 14-05-1652 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 5 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
885-IV-R/R-SS-002	14-05-1652-12-A	05/21/14 13:16	Solid	GC 31	05/21/14	05/23/14 13:49	140521L20
<u>Parameter</u>		Result	<u>RL</u>		DF	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Cor	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		103	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		115	50-	130			

885-IV-R/R-SS-003	14-05-1652-13-A	05/21/14 13:19	Solid GC 31	05/21/14	05/23/14 14:08	140521L20
Parameter		Result	<u>RL</u>	DF	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		510	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		430	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		85	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		114	60-125			
2,4,5,6-Tetrachloro-m-Xylene		117	50-130			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

05/21/14 14-05-1652 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 6 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix I	nstrument	Date Prepared	Date/Time Analyzed	QC Batch ID
885-IV-R/R-SS-004	14-05-1652-14-A	05/21/14 13:22	Solid 0	GC 31	05/21/14	05/23/14 14:27	140521L20
Parameter	·	Result	RL		DF	Qua	lifiers
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Contr</u>	rol Limits	Qualifiers		
Decachlorobiphenyl		108	60-12	25			
2,4,5,6-Tetrachloro-m-Xylene		120	50-13	30			

885-IV-R/R-SS-005	14-05-1652-15-A	05/21/14 13:25	Solid GC 31	05/21/14	05/23/14 14:46	140521L20
Parameter		Result	<u>RL</u>	<u>DF</u>	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		61	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
<u>Surrogate</u>		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		96	60-125			
2,4,5,6-Tetrachloro-m-Xylene		109	50-130			

RL: Reporting Limit. D

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

05/21/14 14-05-1652 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 7 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
885-IV-R/R-SS-006	14-05-1652-16-A	05/21/14 13:29	Solid	GC 31	05/21/14	05/23/14 15:05	140521L20
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	lifiers
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		107	60-	-125			
2,4,5,6-Tetrachloro-m-Xylene		121	50-	-130			

885-IV-R/R-SS-007	14-05-1652-17-A	05/21/14 13:31	Solid GC 31	05/21/14	05/23/14 15:24	140521L20
Parameter		Result	<u>RL</u>	DF	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		110	60-125			
2,4,5,6-Tetrachloro-m-Xylene		118	50-130			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

05/21/14 14-05-1652 EPA 3540C EPA 8082 ug/kg

າດວດ

Page 8 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-02-003-254	N/A	Solid	GC 31	05/21/14	05/23/14 10:57	140521L20
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		111	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		118	50-	130			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-1652 EPA 3550B EPA 8015B (M)

05/21/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 5

Quality Control Sample ID	Туре		Matrix	latrix Instrument		Date Prepared Date Analy		lyzed	zed MS/MSD Batch Num	
14-05-1645-1	Sample	Sample		GC 49		05/22/14	05/22/14	13:24	140522S01	
14-05-1645-1	Matrix Spike		Solid	GC	49	05/22/14	05/22/14	12:52	140522S01	
14-05-1645-1	Matrix Spike	Matrix Spike Duplicate		GC	49	05/22/14	05/22/14	13:08	140522S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	32.75	400.0	402.4	92	298.1	66	64-130	30	0-15	4

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

05/21/14 14-05-1652 EPA 3050B

EPA 6010B

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 5

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepare	d Date Ana	llyzed	MS/MSD Ba	tch Number	
14-05-1580-1	Sample		Solid	ICP	7300	05/21/14	05/21/14 19:40 140521S03				
14-05-1580-1	Matrix Spike	Matrix Spike		ICP	7300	05/21/14	05/21/14	19:45	140521S03		
14-05-1580-1	Matrix Spike	Duplicate	Solid	ICP	7300	05/21/14	05/21/14	19:46	140521S03		
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers	
Antimony	ND	25.00	10.12	40	9.055	36	50-115	11	0-20	3	
Arsenic	3.286	25.00	26.78	94	27.92	99	75-125	4	0-20		
Barium	105.4	25.00	124.9	4X	145.3	4X	75-125	4X	0-20	Q	
Beryllium	ND	25.00	25.96	104	25.59	102	75-125	1	0-20		
Cadmium	2.710	25.00	27.54	99	27.37	99	75-125	1	0-20		
Chromium	9.996	25.00	34.08	96	35.31	101	75-125	4	0-20		
Cobalt	7.996	25.00	33.76	103	34.11	104	75-125	1	0-20		
Copper	34.90	25.00	58.14	93	62.38	110	75-125	7	0-20		
Lead	276.7	25.00	283.4	4X	312.7	4X	75-125	4X	0-20	Q	
Molybdenum	0.3395	25.00	25.26	100	24.74	98	75-125	2	0-20		
Nickel	11.06	25.00	35.18	96	36.75	103	75-125	4	0-20		
Selenium	ND	25.00	22.44	90	20.89	84	75-125	7	0-20		
Silver	ND	12.50	12.61	101	12.42	99	75-125	2	0-20		
Thallium	ND	25.00	20.02	80	18.52	74	75-125	8	0-20	3	
Vanadium	26.76	25.00	48.91	89	52.63	103	75-125	7	0-20		
Zinc	404.4	25.00	179.0	4X	205.9	4X	75-125	4X	0-20	Q	

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received: Work Order: Preparation: Method: 05/21/14 14-05-1652 EPA 3050B EPA 6010B

Page 3 of 5

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
885-IV-R/R-SS-005	Sample		Solid	ICP	7300	05/21/14	05/22/14	12:17	140521S04	
885-IV-R/R-SS-005	Matrix Spike		Solid	ICP	7300	05/21/14	05/22/14	12:03	140521S04	
885-IV-R/R-SS-005	Matrix Spike	Duplicate	Solid	ICP	7300	05/21/14	05/22/14	12:04	140521S04	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	8.118	32	8.971	36	50-115	10	0-20	3
Arsenic	5.602	25.00	34.84	117	31.05	102	75-125	12	0-20	
Barium	121.5	25.00	146.2	4X	148.0	4X	75-125	4X	0-20	Q
Beryllium	0.3737	25.00	26.76	106	26.24	103	75-125	2	0-20	
Cadmium	ND	25.00	25.88	104	28.88	116	75-125	11	0-20	
Chromium	19.00	25.00	44.54	102	44.80	103	75-125	1	0-20	
Cobalt	10.79	25.00	37.14	105	36.81	104	75-125	1	0-20	
Copper	63.58	25.00	100.3	147	102.6	156	75-125	2	0-20	3
Lead	11.11	25.00	41.88	123	38.22	108	75-125	9	0-20	
Molybdenum	ND	25.00	25.38	102	25.18	101	75-125	1	0-20	
Nickel	12.17	25.00	37.75	102	37.49	101	75-125	1	0-20	
Selenium	ND	25.00	21.47	86	20.27	81	75-125	6	0-20	
Silver	ND	12.50	13.01	104	12.82	103	75-125	1	0-20	
Thallium	ND	25.00	20.93	84	19.24	77	75-125	8	0-20	
Vanadium	32.29	25.00	58.35	104	58.61	105	75-125	0	0-20	
Zinc	181.9	25.00	190.3	4X	208.2	4X	75-125	4X	0-20	Q

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-1652 EPA 7471A Total EPA 7471A

05/21/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 4 of 5

Quality Control Sample ID	Туре	Туре		Matrix Instrument		Date Prepared Date Analyzed		lyzed	MS/MSD Batch Number	
885-IV-R/R-SS-005	Sample	Sample		d Mercury 05		05/21/14 05/22/14 1		11:33	140521S09	
885-IV-R/R-SS-005	Matrix Spike		Solid	Mer	cury 05	05/21/14	05/22/14	11:35	140521S09	
885-IV-R/R-SS-005	Matrix Spike I	Matrix Spike Duplicate		Solid Mercury 05		05/21/14	05/22/14	11:38	140521S09	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.8350	0.8326	100	0.7922	95	71-137	5	0-14	

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received: Work Order: Preparation: Method: 05/21/14 14-05-1652 EPA 3540C

EPA 8082

Page 5 of 5

Quality Control Sample ID	Туре		Type Matrix I		Instrument Date Prepared		Date Analyzed		MS/MSD Batch Number	
#1054-13.5	Sample		Solid	GC	31	05/21/14	05/23/14	12:33	140521S20	
#1054-13.5	Matrix Spike		Solid	GC	31	05/21/14	05/23/14	11:16	140521S20	
#1054-13.5	Matrix Spike	Duplicate	Solid	GC	31	05/21/14	05/23/14	11:35	140521S20	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Aroclor-1016	ND	100.0	257.6	258	247.7	248	50-135	4	0-25	3
Aroclor-1260	52.76	100.0	185.8	133	158.5	106	50-135	16	0-25	

RPD: Relative Percent Difference. CL: Control Limits

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/21/14 14-05-1652 EPA 3550B EPA 8015B (M)

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 5

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-490-920	LCS	Solid	GC 49	05/22/14	05/22/14 12:35	140522B01
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
TPH as Diesel		400.0	317.5	79	75-123	3

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

05/21/14 14-05-1652 **EPA 3050B EPA 6010B**

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 5

Quality Control Sample ID	Type	Matrix	Instrumen	t Date Prep	ared Date Ana	lyzed LCS Bate	ch Number
097-01-002-18404	LCS	Solid	ICP 7300	05/21/14	05/22/14	11:56 140521L	03
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		25.00	25.20	101	80-120	73-127	
Arsenic		25.00	24.57	98	80-120	73-127	
Barium		25.00	24.90	100	80-120	73-127	
Beryllium		25.00	24.36	97	80-120	73-127	
Cadmium		25.00	25.76	103	80-120	73-127	
Chromium		25.00	24.70	99	80-120	73-127	
Cobalt		25.00	27.83	111	80-120	73-127	
Copper		25.00	26.60	106	80-120	73-127	
Lead		25.00	25.91	104	80-120	73-127	
Molybdenum		25.00	25.63	103	80-120	73-127	
Nickel		25.00	26.20	105	80-120	73-127	
Selenium		25.00	22.80	91	80-120	73-127	
Silver		12.50	12.67	101	80-120	73-127	
Thallium		25.00	26.73	107	80-120	73-127	
Vanadium		25.00	24.11	96	80-120	73-127	
Zinc		25.00	26.32	105	80-120	73-127	

Total number of LCS compounds: 16 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

05/21/14 14-05-1652 **EPA 3050B EPA 6010B**

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 5

Quality Control Sample ID	Type	Matrix	Instrumen	t Date Prepa	red Date Analy	zed LCS Batch I	Number
097-01-002-18405	LCS	Solid	ICP 7300	05/21/14	05/22/14 1 ⁻	1:58 140521L04	
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		25.00	25.04	100	80-120	73-127	
Arsenic		25.00	23.87	95	80-120	73-127	
Barium		25.00	25.01	100	80-120	73-127	
Beryllium		25.00	24.44	98	80-120	73-127	
Cadmium		25.00	25.79	103	80-120	73-127	
Chromium		25.00	24.84	99	80-120	73-127	
Cobalt		25.00	27.77	111	80-120	73-127	
Copper		25.00	26.56	106	80-120	73-127	
Lead		25.00	25.54	102	80-120	73-127	
Molybdenum		25.00	25.23	101	80-120	73-127	
Nickel		25.00	26.30	105	80-120	73-127	
Selenium		25.00	22.58	90	80-120	73-127	
Silver		12.50	12.67	101	80-120	73-127	
Thallium		25.00	26.18	105	80-120	73-127	
Vanadium		25.00	24.23	97	80-120	73-127	
Zinc		25.00	26.29	105	80-120	73-127	

Total number of LCS compounds: 16 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Quality Control Sample ID

099-16-272-248

<u>Parameter</u>

Mercury

Date Received: Work Order: Preparation: Method:

0.8567

103

Matrix

Solid

Spike Added

0.8350

14-05-1652 EPA 7471A Total EPA 7471A

Page 4 of 5

05/21/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Туре

LCS

Instrument	Date Prepare	d Date Anal	yzed L	LCS Batch N	lumber
Mercury 05	05/21/14	05/22/14 1	11:26 1	140521L09	
Conc. Recover	ed LCS %I	Rec. 9	%Rec. (<u>CL</u>	Qualifiers

85-121

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

05/21/14 14-05-1652 EPA 3540C EPA 8082

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 5 of 5

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-02-003-254	LCS	Solid	GC 31	05/21/14	05/23/14 10:38	140521L20
<u>Parameter</u>		Spike Added	Conc. Recove	ered LCS %R	Rec. %Rec	. CL Qualifiers
Aroclor-1016		100.0	116.4	116	50-13	5
Aroclor-1260		100.0	115.3	115	60-130	0

Sample Analysis Summary Report

Work Order: 14-05-1652				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6010B	EPA 3050B	469	ICP 7300	1
EPA 7471A	EPA 7471A Total	776	Mercury 05	1
EPA 8015B (M)	EPA 3550B	628	GC 49	1
EPA 8082	EPA 3540C	669	GC 31	1

Glossary of Terms and Qualifiers

Work Order: 14-05-1652 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
Ε	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- Q Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Z Z	OF-CUST	8	<u> </u>	6	G								4000	31340	
PROJECT NUMBER:	E 1 100000	16 270030		LABORATORY NAME: AL	YNAME: AMERICA	CLIENT INF	CLIENT INFORMATION:	A'MEC	REPORTING REQUIREMENTS:	DUIREMENTS.	<u> </u>	L AGE	5		
RESULTS TO: 100	Linda	Contan		LABORATOR	Y ADDRESS:					14.05-1659	L		6		
IORNARGON	U IIME: 18	46	MAAAAAAAA AA MITTA MITTA MAAAAAAA AA AA GAAGAAAAAAAAAA								9				
SAMPLE SHIP	SAMPLE SHIPMENT METHOD:	a			SPORT CON NO WAY				GEOTRACKER REQUIRED	EQUIRED		>	YES	ON	
	2		mat pasture de estados	LABORATOR	Y PHONE NUMBER:			A THE PARTY OF THE	SITE SPECIFIC GLOBAL ID NO	LOBAL ID NO.)	
SAMP	SAMPLERS ((SIGNATURE)	(山):	raf	ANA	NALYSES									
Min	A 1	Mhmin	naket 1	ES W C	51					r (W), Other (O)			ners		
	» [H IMMS	ے ا	08 1	<i>9</i> 2 V				CONTAINER	pe	evative e	ds	Contai	IDNOITION	
DATE	TIME	NUMBER	ER	W23 411	181				TYPE AND SIZE	Filtere	Prese Coole	W/SW		COMMENTS	
18-21-14	1	<i>7014</i>		.×				77	oz gláss jar	5	~		_		
N	C080,	4104	\sim	×						S		人			
~	0803	#104	6	×						<u>ک</u> ار	×		-		
ţ	080	# 1050		×						8	X		_		_
\\ \frac{1}{2}	0806			×						S	×	./			
ંત્ર	0450	#1053-15		メ						15	×		-		
_	1001	#1053-15	. (×						2	<u> </u>		Constitution of the last of th		
8	1015	# 1094-13,	3.5	×						S	×				
	1026	#1055-	5,5	X						S	×	3			
0	1147	7h-20	29	×						0	X		i Cer	concrete	
	1313	885-TV-PIK-55-00	100-55-	×	X					Š	~		_		
~	1316	885-TC- KIR.	/R-SS-002	X	×					S					
2	13/9	885-II-KK	K-SS-003	X X	×					S	<u> </u>				
7	1322	885111一片	K-SS-004	× ×	×					S			_		
L	1325	885-11-R	12-55-005	メメ	メ				-,	5	X	-			
RELINC	RELINQUISHED BY:	•	DATE TIME		RECEIVED BY:	DATE	TIME		F CONTAINERS:						
SENATURE	Proposition of the second	" WALLING SI		SIGNATURE	Kha	<u>%</u>		SAMPLING COMMENTS:	ENTS:						
ZINE SOL	N/I	Chominsky"	200 N	TKN V	when	7	200								
COMPANY:	/AME		7	COMPANY:		2/					***************************************				Г
PRINTED	PRINTED NAME	7	ζ;			/\'\'\'\\	<u>}</u>								-ayı
COMPANY	1 XAMES		(2)		Con Cies	1/ ₁ /_	(8)								9 55
SIGNATURE	نِنِ ﴿		1,7	SIGNATURE	اد			121 ln	121 Innovation Drive Suite 200	200					01 0
PRINTED NAME:	VAME:			PRINTED NAME:	NAME:	T		Irvine	_ :=	3094					1
COMPANY:				COMPANY:				Tel 949.642.0245	İ	Fax 949.642.4474					
Name and Advantage and Advanta								_							

Return to Contents

		1711	M	
PROJECT NAME: TOYMEY PECHI PROJECT NUMBER: 0106270030 RESULTS TO: UNCR. (00100)	LABORATORY ADDRESS.	CLIENT INFORMATION: YAMEC	DAIE: $\int - \int_{\mathcal{L}} - \int_{\mathcal{L}}$	PAGE A OF
TURNAROUND TIME: 48 FPK SAMPLE SHIPMENT METHOD:	ENBORATORY CONTROP		GEOTRACKER REQUIRED	YES NO
lab contrap	LABORATORY PHONE NUMBER:		SITE SPECIFIC GLOBAL ID NO.	$ \mathcal{I} $
SAMPLERS (SIGNATURE):	ANALYSES	S		
Hunderly Schminsky	S108 C808 PM CC		Water (W), t, or Other (O)	
DATE TIME NUMBER	14.17 Aga Aga Aga	CONT	Filtered	COOled COMMENTS
65-21-14 1329 885-12-KR-55-006	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	4 62 91455	455 jav S	× ×
		V		
		-	AMEDS.	
里、	RECEIVED BY:	ATE TIME	AINEKO:	
REMINISTRATION OF THE COMPANY OF THE	PRINTED NAME: MARGUEZ SOMPANY: (P.E.C.	15/ 1608		
SIGNATURE: Mayer 5, 81, 815 COMPANY: A MAYER COMPANY: A M	SIGNATURE: PRINTED NAME: COMPANY:	12/4 (P35		T ugo oo o
SIGNATURE:	SIGNATURE:	121 Innovatio	121 Innovation Drive, Suite 200	2
PRINTED NAME: COMPANY:	PKIN I ED NAME: COMPANY:	Irvine, Califor Tel 949.642.0245	Irvine, California 92617-3094 19.642.0245 Fax 949.642.4474	amec
		Datum to Contents		

Return to Contents

WORK ORDER #: **14-05-** □

SAMPLE RECEIPT F	ORM C	cooler <u> </u>	of
CLIENT: ALEC	DATE:	05/21/	14
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not f	rozen except se	diment/tissue)	
Temperature 3.7° C - 0.3° C (CF) = 3.4° C	Blank	☐ Sample	
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)	·	
☐ Sample(s) outside temperature criteria but received on ice/chilled on sa	– me dav of sampl	ing.	
☐ Received at ambient temperature, placed on ice for transport b		Ŭ	
Ambient Temperature: Air Filter	,	Checked by:	678
Ambient remperature. E.7. E.7. E.7. E.7. E.7. E.7. E.7. E.			
CUSTODY SEALS INTACT:			2
□ Cooler □ □ No (Not Intact) ✓ Not Pres	sent □ N/A	Checked by:	6 18
□ Sample □ □ No (Not Intact) □ Not Pres	sent	Checked by:	862
CANADI E CONDITIONI.	V	No.	V/A
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples	Yes	No I	V/A
COC document(\$) received complete	•		П
Collection date/time, matrix, and/or # of containers logged in based on sample la			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sampler's name indicated on COC	≠		
Sample container label(s) consistent with COC	⊭		
Sample container(s) intact and good condition	Þ		
Proper containers and sufficient volume for analyses requested	🗹		
Analyses received within holding time	🗹		
Aqueous samples received within 15-minute holding time			
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfides ☐ Dissolved Oxygen	П		Ø
Proper preservation noted on COC or sample container	🗆		Ø
☐ Unpreserved vials received for Volatiles analysis		_	
Volatile analysis container(s) free of headspace			<u>p</u>
Tedlar bag(s) free of condensation CONTAINER TYPE:			للر ا
Solid: ☑4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □En(Cores [®] □Terra	Cores [®] □	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125A	GB p □1AGB [□1AGB na ₂ □1	AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250C	GBs □1PB	□1PB na □50	0PB

□250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □ ____ □

Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope

Air:

| Tedlar | Canister Other: | Trip Blank Lot#: Labeled/Checked by: | Labeled/Check

Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ u: Ultra-pure znna: ZnAc₂+NaOH f: Filtered Scanned by:

Reviewed by:

CALSCIENCE

WORK ORDER NUMBER: 14-05-1740

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate Facility /

0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

ResultLink)

Email your PM >

Approved for release on 05/27/2014 by:

Stephen Nowak Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Former Pechiney Cast Plate Facility / 0106270030

Work Order Number: 14-05-1740

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data	9 12 18 19
5	Quality Control Sample Data.5.1 MS/MSD.5.2 LCS/LCSD.5.2 LCS/LCSD.	22 22 26
6	Sample Analysis Summary	30
7	Glossary of Terms and Qualifiers	31
8	Chain of Custody/Sample Receipt Form	32

Work Order Narrative

Work Order: 14-05-1740 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 05/22/14. They were assigned to Work Order 14-05-1740.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-1740

Project Name: Former Pechiney Cast Plate Facility /

0106270030

PO Number: 0106270030 05/22/14 17:25

Date/Time Received:

Number of

5

Containers:

Attn: Linda Conlan

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
#1056	14-05-1740-1	05/22/14 08:45	1	Solid
#1057	14-05-1740-2	05/22/14 08:50	1	Solid
#1058	14-05-1740-3	05/22/14 08:52	1	Solid
#1059	14-05-1740-4	05/22/14 08:55	1	Solid
#1060	14-05-1740-5	05/22/14 09:00	1	Solid

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-1740

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 05/22/14

Attn: Linda Conlan Page 1 of 4

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1056 (14-05-1740-1)						
Antimony	15.1		0.750	mg/kg	EPA 6010B	EPA 3050B
Arsenic	3.20		0.750	mg/kg	EPA 6010B	EPA 3050B
Barium	142		0.500	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.342		0.250	mg/kg	EPA 6010B	EPA 3050B
Chromium	30.1		0.250	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.6		0.250	mg/kg	EPA 6010B	EPA 3050B
Copper	70.2		0.500	mg/kg	EPA 6010B	EPA 3050B
Lead	377		0.500	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.740		0.250	mg/kg	EPA 6010B	EPA 3050B
Nickel	89.5		0.250	mg/kg	EPA 6010B	EPA 3050B
Vanadium	50.6		0.250	mg/kg	EPA 6010B	EPA 3050B
Zinc	328		1.00	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.364		0.0833	mg/kg	EPA 7471A	EPA 7471A Total
C13-C14	71		50	mg/kg	EPA 8015B (M)	EPA 3550B
C17-C18	96		50	mg/kg	EPA 8015B (M)	EPA 3550B
C19-C20	170		50	mg/kg	EPA 8015B (M)	EPA 3550B
C21-C22	190		50	mg/kg	EPA 8015B (M)	EPA 3550B
C23-C24	280		50	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	310		50	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	330		50	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	300		50	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	120		50	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	2000		50	mg/kg	EPA 8015B (M)	EPA 3550B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-1740

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

05/22/14 Received:

Attn: Linda Conlan Page 2 of 4

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1057 (14-05-1740-2)						
Arsenic	3.04		0.750	mg/kg	EPA 6010B	EPA 3050B
Barium	71.5		0.500	mg/kg	EPA 6010B	EPA 3050B
Cadmium	0.798		0.500	mg/kg	EPA 6010B	EPA 3050B
Chromium	46.5		0.250	mg/kg	EPA 6010B	EPA 3050B
Cobalt	7.06		0.250	mg/kg	EPA 6010B	EPA 3050B
Copper	80.8		0.500	mg/kg	EPA 6010B	EPA 3050B
Lead	104		0.500	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	11.2		0.250	mg/kg	EPA 6010B	EPA 3050B
Nickel	53.8		0.250	mg/kg	EPA 6010B	EPA 3050B
Vanadium	22.8		0.250	mg/kg	EPA 6010B	EPA 3050B
Zinc	346		1.00	mg/kg	EPA 6010B	EPA 3050B
Aroclor-1248	140		50	ug/kg	EPA 8082	EPA 3540C
Aroclor-1254	550		50	ug/kg	EPA 8082	EPA 3540C
Aroclor-1260	440		50	ug/kg	EPA 8082	EPA 3540C
#1058 (14-05-1740-3)						
Arsenic	21.9		0.750	mg/kg	EPA 6010B	EPA 3050B
Barium	80.2		0.500	mg/kg	EPA 6010B	EPA 3050B
Chromium	58.2		0.250	mg/kg	EPA 6010B	EPA 3050B
Cobalt	28.4		0.250	mg/kg	EPA 6010B	EPA 3050B
Copper	262		0.500	mg/kg	EPA 6010B	EPA 3050B
Lead	18.5		0.500	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.676		0.250	mg/kg	EPA 6010B	EPA 3050B
Nickel	116		0.250	mg/kg	EPA 6010B	EPA 3050B
Vanadium	19.3		0.250	mg/kg	EPA 6010B	EPA 3050B
Zinc	78.4		1.00	mg/kg	EPA 6010B	EPA 3050B
Aroclor-1248	72		50	ug/kg	EPA 8082	EPA 3540C

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-1740

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 05/22/14

Attn: Linda Conlan Page 3 of 4

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1059 (14-05-1740-4)						
Arsenic	39.5		0.735	mg/kg	EPA 6010B	EPA 3050B
Barium	56.5		0.490	mg/kg	EPA 6010B	EPA 3050B
Chromium	108		0.245	mg/kg	EPA 6010B	EPA 3050B
Cobalt	25.5		0.245	mg/kg	EPA 6010B	EPA 3050B
Copper	438		0.490	mg/kg	EPA 6010B	EPA 3050B
Lead	45.5		0.490	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	2.45		0.245	mg/kg	EPA 6010B	EPA 3050B
Nickel	416		0.245	mg/kg	EPA 6010B	EPA 3050B
Vanadium	2.47		0.245	mg/kg	EPA 6010B	EPA 3050B
Zinc	57.9		0.980	mg/kg	EPA 6010B	EPA 3050B
Aroclor-1248	73		50	ug/kg	EPA 8082	EPA 3540C
#1060 (14-05-1740-5)						
Arsenic	7.37		0.743	mg/kg	EPA 6010B	EPA 3050B
Barium	129		0.495	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.328		0.248	mg/kg	EPA 6010B	EPA 3050B
Chromium	27.1		0.248	mg/kg	EPA 6010B	EPA 3050B
Cobalt	13.1		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper	83.9		0.495	mg/kg	EPA 6010B	EPA 3050B
Lead	20.2		0.495	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.359		0.248	mg/kg	EPA 6010B	EPA 3050B
Nickel	109		0.248	mg/kg	EPA 6010B	EPA 3050B
Vanadium	31.5		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc	86.7		0.990	mg/kg	EPA 6010B	EPA 3050B
C15-C16	78		49	mg/kg	EPA 8015B (M)	EPA 3550B
C17-C18	290		49	mg/kg	EPA 8015B (M)	EPA 3550B
C19-C20	410		49	mg/kg	EPA 8015B (M)	EPA 3550B
C21-C22	500		49	mg/kg	EPA 8015B (M)	EPA 3550B
C23-C24	680		49	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	880		49	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	1100		49	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	780		49	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	450		49	mg/kg	EPA 8015B (M)	EPA 3550B
C41-C44	330		49	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	5500		49	mg/kg	EPA 8015B (M)	EPA 3550B
Aroclor-1248	73		50	ug/kg	EPA 8082	EPA 3540C

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-1740

Project Name: Former Pechiney Cast Plate Facility /

0106270030

Received: 05/22/14

Attn: Linda Conlan Page 4 of 4

Client SampleID

<u>Analyte</u> <u>Result</u> <u>Qualifiers</u> <u>RL</u> <u>Units</u> <u>Method</u> <u>Extraction</u>

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-1740 EPA 3550B EPA 8015B (M)

Units:

mg/kg

05/22/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 3

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
#1056		14-05-1740-1-A	05/22/14 08:45	Solid	GC 47	05/23/14	05/23/14 17:13	140523B05A		
Comment(s):	- The total concentration includes individual carbon range concentrations (estimated), if any, below the RL reported as ND.									
<u>Parameter</u>			Result	RL	=	<u>DF</u>	Qua	<u>alifiers</u>		
C6			ND	50		9.90				
C7			ND	50		9.90				
C8			ND	50		9.90				
C9-C10			ND	50		9.90				
C11-C12			ND	50		9.90				
C13-C14			71	50		9.90				
C15-C16			ND	50		9.90				
C17-C18			96	50		9.90				
C19-C20			170	50		9.90				
C21-C22			190	50		9.90				
C23-C24			280	50		9.90				
C25-C28			310	50		9.90				
C29-C32			330	50		9.90				
C33-C36			300	50		9.90				
C37-C40			120	50		9.90				
C41-C44			ND	50		9.90				
C6-C44 Total			2000	50		9.90				
<u>Surrogate</u>			Rec. (%)	Co	ontrol Limits	Qualifiers				
n-Octacosane			142	61	-145					

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/22/14 14-05-1740 EPA 3550B EPA 8015B (M)

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 3

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1060		14-05-1740-5-A	05/22/14 09:00	Solid	GC 47	05/23/14	05/23/14 16:56	140523B05A
Comment(s):	- The total concentration	includes individual ca	rbon range cond	centrations (es	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			<u>Result</u>	RL	=	<u>DF</u>	Qua	<u>alifiers</u>
C6			ND	49	1	9.80		
C7			ND	49	1	9.80		
C8			ND	49	1	9.80		
C9-C10			ND	49	1	9.80		
C11-C12			ND	49	1	9.80		
C13-C14			ND	49	1	9.80		
C15-C16			78	49	1	9.80		
C17-C18			290	49	1	9.80		
C19-C20			410	49	1	9.80		
C21-C22			500	49	1	9.80		
C23-C24			680	49	1	9.80		
C25-C28			880	49	1	9.80		
C29-C32			1100	49	1	9.80		
C33-C36			780	49	1	9.80		
C37-C40			450	49	1	9.80		
C41-C44			330	49	1	9.80		
C6-C44 Total			5500	49	1	9.80		
<u>Surrogate</u>			Rec. (%)	Co	ontrol Limits	Qualifiers		
n-Octacosane			130	61	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

Units:

05/22/14 14-05-1740 EPA 3550B EPA 8015B (M)

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-924	N/A	Solid	GC 47	05/23/14	05/23/14 12:03	140523B05A
<u>Parameter</u>		Result	RL		DF	Qua	alifiers
C6		ND	5.0		1.00		
C7		ND	5.0		1.00		
C8		ND	5.0		1.00		
C9-C10		ND	5.0		1.00		
C11-C12		ND	5.0		1.00		
C13-C14		ND	5.0		1.00		
C15-C16		ND	5.0		1.00		
C17-C18		ND	5.0		1.00		
C19-C20		ND	5.0		1.00		
C21-C22		ND	5.0		1.00		
C23-C24		ND	5.0		1.00		
C25-C28		ND	5.0		1.00		
C29-C32		ND	5.0		1.00		
C33-C36		ND	5.0		1.00		
C37-C40		ND	5.0		1.00		
C41-C44		ND	5.0		1.00		
C6-C44 Total		ND	5.0		1.00		
<u>Surrogate</u>		Rec. (%)	Co	ntrol Limits	Qualifiers		
n-Octacosane		87	61-	145			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/22/14 14-05-1740 EPA 3050B EPA 6010B

Units: mg/kg
Page 1 of 6

Project: Former Pechiney Cast Plate Facility / 0106270030

me OC Batch

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1056	14-05-1740-1-A	05/22/14 08:45	Solid	ICP 7300	05/22/14	05/23/14 15:31	140522L04
Parameter		<u>Result</u>	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		15.1	().750	1.00		
Arsenic		3.20	().750	1.00		
Barium		142	(0.500	1.00		
Beryllium		0.342	().250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		30.1	(0.250	1.00		
Cobalt		12.6	(0.250	1.00		
Copper		70.2	(0.500	1.00		
Lead		377	(0.500	1.00		
Molybdenum		0.740	(0.250	1.00		
Nickel		89.5	(0.250	1.00		
Selenium		ND	().750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	(0.750	1.00		
Vanadium		50.6	(0.250	1.00		
Zinc		328	1	1.00	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/22/14 14-05-1740 EPA 3050B EPA 6010B

Units:

mg/kg Page 2 of 6

Project: Former Pechiney Cast Plate Facility / 0106270030

me QC Batch II

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1057	14-05-1740-2-A	05/22/14 08:50	Solid	ICP 7300	05/22/14	05/23/14 15:32	140522L04
<u>Parameter</u>		Result	<u> </u>	RL	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.750	1.00		
Arsenic		3.04	(0.750	1.00		
Barium		71.5	(0.500	1.00		
Beryllium		ND	(0.250	1.00		
Cadmium		0.798	(0.500	1.00		
Chromium		46.5	(0.250	1.00		
Cobalt		7.06	(0.250	1.00		
Copper		80.8	(0.500	1.00		
Lead		104	(0.500	1.00		
Molybdenum		11.2	(0.250	1.00		
Nickel		53.8	(0.250	1.00		
Selenium		ND	(0.750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	(0.750	1.00		
Vanadium		22.8	(0.250	1.00		
Zinc		346		1.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

05/22/14 14-05-1740 EPA 3050B EPA 6010B

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1058	14-05-1740-3-A	05/22/14 08:52	Solid	ICP 7300	05/22/14	05/23/14 15:33	140522L04
<u>Parameter</u>		Result]	<u> </u>	<u>DF</u>	Qua	llifiers
Antimony		ND	(0.750	1.00		
Arsenic		21.9	(0.750	1.00		
Barium		80.2	(0.500	1.00		
Beryllium		ND	(0.250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		58.2	(0.250	1.00		
Cobalt		28.4	(0.250	1.00		
Copper		262	(0.500	1.00		
Lead		18.5	(0.500	1.00		
Molybdenum		0.676	(0.250	1.00		
Nickel		116	(0.250	1.00		
Selenium		ND	(0.750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	(0.750	1.00		
Vanadium		19.3	(0.250	1.00		
Zinc		78.4		1.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/22/14 14-05-1740 EPA 3050B EPA 6010B

Units:

mg/kg Page 4 of 6

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1059	14-05-1740-4-A	05/22/14 08:55	Solid	ICP 7300	05/22/14	05/23/14 15:35	140522L04
<u>Parameter</u>		<u>Result</u>	<u> </u>	<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
Antimony		ND	(0.735	0.980		
Arsenic		39.5	(0.735	0.980		
Barium		56.5	(0.490	0.980		
Beryllium		ND	(0.245	0.980		
Cadmium		ND	(0.490	0.980		
Chromium		108	(0.245	0.980		
Cobalt		25.5	(0.245	0.980		
Copper		438	(0.490	0.980		
Lead		45.5	(0.490	0.980		
Molybdenum		2.45	(0.245	0.980		
Nickel		416	(0.245	0.980		
Selenium		ND	(0.735	0.980		
Silver		ND	(0.245	0.980		
Thallium		ND	(0.735	0.980		
Vanadium		2.47	(0.245	0.980		
Zinc		57.9	(0.980	0.980		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Vanadium

Zinc

Date Received:
Work Order:
Preparation:
Method:

0.248

0.990

0.990

0.990

05/22/14 14-05-1740 EPA 3050B EPA 6010B

Units:

Project: Former Pechiney Cast Plate Facility / 0106270030

mg/kg Page 5 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1060	14-05-1740-5-A	05/22/14 09:00	Solid	ICP 7300	05/22/14	05/23/14 15:36	140522L04
<u>Parameter</u>		<u>Result</u>	<u> </u>	<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Antimony		ND	(0.743	0.990		
Arsenic		7.37	(0.743	0.990		
Barium		129	(0.495	0.990		
Beryllium		0.328	(0.248	0.990		
Cadmium		ND	(0.495	0.990		
Chromium		27.1	(0.248	0.990		
Cobalt		13.1	(0.248	0.990		
Copper		83.9	(0.495	0.990		
Lead		20.2	(0.495	0.990		
Molybdenum		0.359	(0.248	0.990		
Nickel		109	(0.248	0.990		
Selenium		ND	(0.743	0.990		
Silver		ND	(0.248	0.990		
Thallium		ND	(0.743	0.990		

31.5

86.7

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/22/14 14-05-1740 EPA 3050B EPA 6010B

Units:

Project: Former Pechiney Cast Plate Facility / 0106270030

mg/kg Page 6 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-18406	N/A	Solid	ICP 7300	05/22/14	05/22/14 17:59	140522L04
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	(0.750	1.00		
Arsenic		ND	(0.750	1.00		
Barium		ND	(0.500	1.00		
Beryllium		ND	(0.250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		ND	(0.250	1.00		
Cobalt		ND	(0.250	1.00		
Copper		ND	(0.500	1.00		
Lead		ND	(0.500	1.00		
Molybdenum		ND	(0.250	1.00		
Nickel		ND	(0.250	1.00		
Selenium		ND	(0.750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	(0.750	1.00		
Vanadium		ND	(0.250	1.00		
Zinc		ND		1.00	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-1740 EPA 7471A Total EPA 7471A

05/22/14

Units: mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 1

Project: Former Pechiney C	ast Plate Facility / 0106	270030				Pa	age 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1056	14-05-1740-1-A	05/22/14 08:45	Solid	Mercury 05	05/22/14	05/22/14 20:50	140522L08
Parameter		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		0.364		0.0833	1.00		
#1057	14-05-1740-2-A	05/22/14 08:50	Solid	Mercury 05	05/22/14	05/22/14 20:57	140522L08
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0833	1.00		
#1058	14-05-1740-3-A	05/22/14 08:52	Solid	Mercury 05	05/22/14	05/22/14 21:03	140522L08
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0794	1.00		
#1059	14-05-1740-4-A	05/22/14 08:55	Solid	Mercury 05	05/22/14	05/22/14 21:05	140522L08
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0847	1.00		
#1060	14-05-1740-5-A	05/22/14 09:00	Solid	Mercury 05	05/22/14	05/22/14 21:08	140522L08
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0820	1.00		
Method Blank	099-16-272-256	N/A	Solid	Mercury 05	05/22/14	05/22/14 20:45	140522L08
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0833	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

05/22/14 14-05-1740 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1056	14-05-1740-1-A	05/22/14 08:45	Solid	GC 58	05/22/14	05/24/14 16:06	140522L16
Parameter	·	Result	RL	:	DF	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		
Decachlorobiphenyl		112	60	-125			
2,4,5,6-Tetrachloro-m-Xylene		101	50	-130			

#1057	14-05-1740-2-A	05/22/14 08:50	Solid GC 58	05/22/14	05/24/14 16:24	140522L16
Parameter		Result	<u>RL</u>	DF	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		140	50	1.00		
Aroclor-1254		550	50	1.00		
Aroclor-1260		440	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		95	60-125			
2,4,5,6-Tetrachloro-m-Xylene		91	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

05/22/14 14-05-1740 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1058	14-05-1740-3-A	05/22/14 08:52	Solid	GC 58	05/22/14	05/24/14 17:00	140522L16
Parameter		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		72	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		107	60-	-125			
2,4,5,6-Tetrachloro-m-Xylene		97	50-	-130			

#1059	14-05-1740-4-A	05/22/14 08:55	Solid GC 58	05/22/14	05/24/14 17:18	140522L16
Parameter		Result	<u>RL</u>	<u>DF</u>	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		73	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		106	60-125			
2,4,5,6-Tetrachloro-m-Xylene		106	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

05/22/14 14-05-1740 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1060	14-05-1740-5-A	05/22/14 09:00	Solid	GC 58	05/22/14	05/24/14 17:35	140522L16
Parameter		Result	RL	:	DF	Qua	<u>lifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		73	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		103	60-	-125			
2,4,5,6-Tetrachloro-m-Xylene		108	50-	-130			

Method Blank	099-02-003-255	N/A	Solid GC 58	3 05/22/14	05/24/14 15:12	140522L16
Parameter		Result	<u>RL</u>	<u>DF</u>	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Lir	nits Qualifiers		
Decachlorobiphenyl		106	60-125			
2,4,5,6-Tetrachloro-m-Xylene		104	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation:

14-05-1740 EPA 3550B

05/22/14

Method:

EPA 8015B (M)

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 4

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
14-05-1746-4	Sample		Solid	GC	47	05/23/14	05/23/14	14:04	140523S05	
14-05-1746-4	Matrix Spike		Solid	GC	47	05/23/14	05/23/14	12:37	140523S05	
14-05-1746-4	Matrix Spike	Duplicate	Solid	GC	47	05/23/14	05/23/14	12:54	140523S05	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	ND	400.0	406.3	102	396.6	99	55-133	2	0-30	

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/22/14 14-05-1740 EPA 3050B

EPA 6010B

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 4

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepare	d Date Ana	lyzed	MS/MSD Ba	tch Number
14-05-0812-6	Sample		Solid	ICP	7300	05/22/14	05/22/14	18:05	140522S04	
14-05-0812-6	Matrix Spike		Solid	ICP	7300	05/22/14	05/22/14	18:06	140522S04	
14-05-0812-6	Matrix Spike	Duplicate	Solid	ICP	7300	05/22/14	05/22/14	18:11	140522S04	
<u>Parameter</u>	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	4.136	17	4.549	18	50-115	10	0-20	3
Arsenic	4.001	25.00	28.50	98	27.80	95	75-125	2	0-20	
Barium	193.4	25.00	288.7	4X	200.0	4X	75-125	4X	0-20	Q
Beryllium	0.4187	25.00	26.63	105	26.39	104	75-125	1	0-20	
Cadmium	ND	25.00	24.70	99	24.36	97	75-125	1	0-20	
Chromium	66.56	25.00	91.26	99	88.85	89	75-125	3	0-20	
Cobalt	18.96	25.00	42.33	93	41.99	92	75-125	1	0-20	
Copper	41.66	25.00	68.60	108	65.49	95	75-125	5	0-20	
Lead	4.436	25.00	28.38	96	28.66	97	75-125	1	0-20	
Molybdenum	ND	25.00	21.44	86	21.26	85	75-125	1	0-20	
Nickel	79.69	25.00	102.2	90	101.4	87	75-125	1	0-20	
Selenium	ND	25.00	19.58	78	19.20	77	75-125	2	0-20	
Silver	ND	12.50	12.74	102	12.67	101	75-125	1	0-20	
Thallium	ND	25.00	23.04	92	22.75	91	75-125	1	0-20	
Vanadium	72.62	25.00	99.99	109	95.65	92	75-125	4	0-20	
Zinc	47.26	25.00	70.98	95	69.80	90	75-125	2	0-20	

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-1740 EPA 7471A Total EPA 7471A

05/22/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 4

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number
#1056	Sample		Solid	Mer	cury 05	05/22/14	05/22/14	20:50	140522S08	
#1056	Matrix Spike		Solid	Mer	cury 05	05/22/14	05/22/14	20:52	140522S08	
#1056	Matrix Spike I	Duplicate	Solid	Mer	cury 05	05/22/14	05/22/14	20:54	140522S08	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	0.3643	0.8350	0.9944	75	1.122	91	71-137	12	0-14	

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/22/14 14-05-1740 EPA 3540C EPA 8082

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 4 of 4

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
#1056	Sample		Solid	GC	58	05/22/14	05/24/14	16:06	140522S16	
#1056	Matrix Spike		Solid	GC	58	05/22/14	05/24/14	15:30	140522S16	
#1056	Matrix Spike	Duplicate	Solid	GC	58	05/22/14	05/24/14	15:48	140522S16	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Aroclor-1016	ND	100.0	207.5	207	183.7	184	50-135	12	0-25	3
Aroclor-1260	ND	100.0	84.09	84	85.99	86	50-135	2	0-25	

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/22/14 14-05-1740 EPA 3550B EPA 8015B (M)

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 4

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-490-924	LCS	Solid	GC 47	05/23/14	05/23/14 12:20	140523B05A
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %Re	ec. %Rec	. CL Qualifiers
TPH as Diesel		400.0	374.8	94	75-123	3

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

05/22/14 14-05-1740 EPA 3050B EPA 6010B

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 4

Quality Control Sample ID	Type	Matrix	Instrumen	t Date Prepa	red Date Analy	zed LCS Batch N	lumber
097-01-002-18406	LCS	Solid	ICP 7300	05/22/14	05/22/14 18	3:04 140522L04	
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		25.00	24.79	99	80-120	73-127	
Arsenic		25.00	24.24	97	80-120	73-127	
Barium		25.00	25.50	102	80-120	73-127	
Beryllium		25.00	24.65	99	80-120	73-127	
Cadmium		25.00	25.68	103	80-120	73-127	
Chromium		25.00	25.41	102	80-120	73-127	
Cobalt		25.00	27.65	111	80-120	73-127	
Copper		25.00	25.39	102	80-120	73-127	
Lead		25.00	25.74	103	80-120	73-127	
Molybdenum		25.00	24.98	100	80-120	73-127	
Nickel		25.00	26.67	107	80-120	73-127	
Selenium		25.00	22.28	89	80-120	73-127	
Silver		12.50	12.86	103	80-120	73-127	
Thallium		25.00	26.15	105	80-120	73-127	
Vanadium		25.00	24.60	98	80-120	73-127	
Zinc		25.00	25.78	103	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-1740 EPA 7471A Total EPA 7471A

05/22/14

Project: Former Pechiney Cast Plate Facility / 0106270030

	F	ag	je	3 c	of 4	1	

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-256	LCS	Solid	Mercury 05	05/22/14	05/22/14 20:47	140522L08
<u>Parameter</u>		Spike Added	Conc. Recovered	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.8350	0.8722	104	85-12	1

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received: Work Order: Preparation: Method:

14-05-1740 EPA 3540C EPA 8082

05/22/14

Page 4 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-02-003-255	LCS	Solid	GC 58	05/22/14	05/24/14 14:54	140522L16
Parameter		Spike Added	Conc. Recover	ed LCS %R	ec. %Rec	. CL Qualifiers
Aroclor-1016		100.0	93.15	93	50-13	5
Aroclor-1260		100.0	94.64	95	60-130)

RPD: Relative Percent Difference. CL: Control Limits

Sample Analysis Summary Report

Work Order: 14-05-1740				Page 1 of 1
<u>Method</u>	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6010B	EPA 3050B	469	ICP 7300	1
EPA 7471A	EPA 7471A Total	915	Mercury 05	1
EPA 8015B (M)	EPA 3550B	682	GC 47	1
EPA 8082	EPA 3540C	669	GC 58	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 14-05-1740 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- concentration by a factor of four or greater.

 SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

	ECORD	O. Assum	/ 5	DATE: JUSTIN	NB 2749	767
PROJECT NAME: ORANGE PROJECT NUMBER: N. A.	MAN TO	7 7 7	CLIENT INFORMATION:	IG REC		
RESULTS TO: LANGE CAR		LABORATORY ADDRESS:				
TURNAROUND TIME: 43-112						
SAMPLE SHIPMENT METHOD:		LABORATORY CONTACT:		GEOTRACKER REQUIRED	YES	ON
tus country		LABORATORY PHONE NUMBER:		SITE SPECIFIC GLOBAL ID NO.		
SAMPLERS (SIGN	(SIGNATURE):	ANALYSES	SES			
		(510) (144) (1808)		ater (W),	siners	
DATE TIME	SAMPLE	8) Hidl. Joiog j THM 1878 J87J	COI	CONTAINER (S), We Spin (S) Type AND SIZE (S) The Preservative	Cooled MS/MSD Mo. of Conf	ADDITIONAL COMMENTS
5420 1/21/5	\$105P	メメ	404	12- S No.2	\ \ \	
05&0	#1057	メメ		9	X	
25%2	#1053	2		N	\ \	
258c	#1059				×,	
00600	4/060	» »		<u> </u>	X	
RFI INQUISHED BY:	DATE TIME	RECEIVED BY:	DATE TIME TOTAL NUMBER OF CONTAINERS:	ONTAINERS:	(S)	
SIGNATURE:	X	SIGMATURE		3;		
PRINTED NAME: LTS TAKE	in the	PRINTED NAME: D. (LD) J. (COMPANY:	7/20/ 15.15			
SIGNATURE.	St. C. Mra/s	SIGNATURE:	5/21 100 31			
COMPANY: Cal		COMPANY: CEL	- My 150			
SIGNATURE: PRINTED NAME:	-	SIGNATURE: PRINTED NAME:	121 Innove	≕ ∟		
COMPANY:		COMPANY:	Tel 949.642.0245	245 Fax 949.642.4474		

eturn to Contents

WORK ORDER #: 14-05- □ □

SAMPLE RECEIPT FORM Cooler ___ of ___

CLIENT: AMEC	DATE:	05/22/	14
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozen	en except se	ediment/tissue)
Temperature 2.9 °C - 0.3 °C (CF) = 2.6 °C		☐ Sample	
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)		•	
☐ Sample(s) outside temperature criteria but received on ice/chilled on same	day of samp	lina	
☐ Received at ambient temperature, placed on ice for transport by C		g.	
Ambient Temperature: Air Filter	ourior.	Checked by	. 304
Ambient remperature. 🗆 🗥 🗀 t inci			
CUSTODY SEALS INTACT:			2014
□ Cooler □ □ No (Not Intact) ☑ Not Present	: □ N/A	_	
□ Sample □ □ No (Not Intact) ☑ Not Present	-	Checked by:	: <u>8nc</u>
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	_		
COC document(s) received complete	/		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sampler's name indicated on COC	🗹		
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition			
Proper containers and sufficient volume for analyses requested	. 🗹		
Analyses received within holding time	. 🗹		
Aqueous samples received within 15-minute holding time			
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfides ☐ Dissolved Oxygen	🗆		
Proper preservation noted on COC or sample container	🗆		Ø
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace	🗆		Ø
Tedlar bag(s) free of condensation	🗆		Ø
Solid: ∠4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCore	es [®] □Terra	aCores [®] □	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGB	p □1AGB	□1AGB na ₂ □	1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGB	s □1PB	□1PBna □5	500PB
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na₂ □_		□	
Air: □Tedlar [®] □Canister Other: □ Trip Blank Lot#:	Labeled	/Checked by:	8ns
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: E Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ +N	invelope l	Reviewed by: _	659

Supplemental Report 1

Additional requested analyses are reported as a stand-alone report.

CALSCIENCE

WORK ORDER NUMBER: 14-05-1740

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate Facility /

0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

ResultLink >

Email your PM >

Approved for release on 06/06/2014 by:

Stephen Nowak Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	Former Pechiney Cast Plate Facility / 0106270030
Cheni Frojeci Name.	Former Fechiney Cast Flate Facility / 01002/0030

Work Order Number: 14-05-1740

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data	6 6 7
5	Quality Control Sample Data	8 8 10
6	Sample Analysis Summary	12
7	Glossary of Terms and Qualifiers	13
8	Chain of Custody/Sample Receipt Form	14

Work Order Narrative

Work Order: 14-05-1740 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 05/22/14. They were assigned to Work Order 14-05-1740.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

05/22/14 17:25

5

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-1740

Project Name: Former Pechiney Cast Plate Facility / 0106270030

PO Number: 0106270030

Date/Time Received:

Number of Containers:

Attn: Linda Conlan

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
#1056	14-05-1740-1	05/22/14 08:45	1	Solid
#1057	14-05-1740-2	05/22/14 08:50	1	Solid
#1058	14-05-1740-3	05/22/14 08:52	1	Solid
#1059	14-05-1740-4	05/22/14 08:55	1	Solid

Detections Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-1740

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 05/22/14

Attn: Linda Conlan Page 1 of 1

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1056 (14-05-1740-1)						
Lead	0.173		0.100	mg/L	EPA 6010B	EPA 1311
Lead	1.97		0.100	mg/L	EPA 6010B	T22.11.5. AII
#1057 (14-05-1740-2)						
Lead	4.98		0.100	mg/L	EPA 6010B	T22.11.5. AII
#1058 (14-05-1740-3)						
Chromium	4.61		0.100	mg/L	EPA 6010B	T22.11.5. AII
#1059 (14-05-1740-4)						
Chromium	1.89		0.100	mg/L	EPA 6010B	T22.11.5. AII

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

140605LA1

Qualifiers

Analytical Report

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Chromium

<u>Parameter</u>

Chromium

Lead

Method Blank

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received: Work Order: Preparation: Method:

0.100

<u>RL</u>

0.100

0.100

Aqueous

ICP 7300

14-05-1740 T22.11.5. All EPA 6010B

05/22/14

Units: mg/L Page 1 of 1

1.00

06/03/14

<u>DF</u>

1.00

1.00

06/05/14 17:49

	<u> </u>						<u> </u>
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1056	14-05-1740-1-A	05/22/14 08:45	Solid	ICP 7300	06/03/14	06/05/14 18:14	140605LA1
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Lead		1.97	(0.100	1.00		
#1057	14-05-1740-2-A	05/22/14 08:50	Solid	ICP 7300	06/03/14	06/05/14 18:15	140605LA1
<u>Parameter</u>		Result	1	RL	<u>DF</u>	Qua	alifiers
Lead		4.98	(0.100	1.00		
#1058	14-05-1740-3-A	05/22/14 08:52	Solid	ICP 7300	06/03/14	06/05/14 18:17	140605LA1
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Chromium		4.61	(0.100	1.00		
#1059	14-05-1740-4-A	05/22/14 08:55	Solid	ICP 7300	06/03/14	06/05/14 18:18	140605LA1
<u>Parameter</u>		Result	1	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>

1.89

Result

ND

ND

N/A

097-05-006-7287

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-1740 EPA 1311 EPA 6010B

Units:

mg/L

05/22/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1056	14-05-1740-1-A	05/22/14 08:45	Solid	ICP 7300	06/03/14	06/04/14 16:12	140604LA1
<u>Parameter</u>		Result	R	<u>RL</u>	<u>DF</u>	Qua	alifiers
Lead		0.173	0	.100	1.00		

Method Blank	099-14-021-1218	N/A	Aqueous	ICP 7300	06/03/14	06/04/14 15:28	140604LA1
Parameter		Result	<u>RL</u>		<u>DF</u>	Quali	<u>fiers</u>
Lead		ND	0.1	00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/22/14 14-05-1740 T22.11.5. AII EPA 6010B

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 2

Quality Control Sample ID	Type		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
14-06-0282-1	Sample		Aqueou	s IC	P 7300	06/05/14	06/05/14	17:53	140605SA1	
14-06-0282-1	Matrix Spike		Aqueou	s IC	P 7300	06/05/14	06/05/14	17:55	140605SA1	
14-06-0282-1	Matrix Spike	Duplicate	Aqueou	s IC	P 7300	06/05/14	06/05/14	17:56	140605SA1	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Chromium	ND	5.000	5.220	104	5.276	106	75-125	1	0-20	
Lead	ND	5.000	5.410	108	5.467	109	75-125	1	0-20	

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received: Work Order: Preparation: Method: 05/22/14 14-05-1740 EPA 1311

EPA 6010B

Page 2 of 2

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
14-05-2144-3	Sample		Solid	ICP	7300	06/03/14	06/04/14	15:49	140604SA1	
14-05-2144-3	Matrix Spike		Solid	ICP	7300	06/03/14	06/04/14	15:50	140604SA1	
14-05-2144-3	Matrix Spike I	Duplicate	Solid	ICP	7300	06/03/14	06/04/14	15:52	140604SA1	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Lead	0.9435	5.000	6.490	111	5.605	93	84-120	15	0-7	4

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

05/22/14 14-05-1740 T22.11.5. AII EPA 6010B

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 2

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
097-05-006-7287	LCS	Aqueous	ICP 7300	06/03/14	06/05/14 17:51	140605LA1
<u>Parameter</u>		Spike Added	Conc. Recover	red LCS %R	ec. %Rec	. CL Qualifiers
Chromium		5.000	5.555	111	80-120	0
Lead		5.000	5.622	112	80-120	0

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/22/14 14-05-1740 EPA 1311

EPA 6010B

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 2

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-021-1218	LCS	Aqueous	ICP 7300	06/03/14	06/04/14 15:30	140604LA1
<u>Parameter</u>		Spike Added	Conc. Recove	red LCS %R	ec. %Rec	. CL Qualifiers
Lead		5.000	5.330	107	80-12	0

Sample Analysis Summary Report

Work Order: 14-05-1740				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6010B	EPA 1311	469	ICP 7300	1
EPA 6010B	T22.11.5. AII	469	ICP 7300	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 14-05-1740 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

SG The sample extract was subjected to Silica Gel treatment prior to analysis.

% Recovery and/or RPD out-of-range.

Χ

Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Stephen Nowak

From: Holland, Kim [Kim.Holland@amec.com] Sent: Tuesday, June 03, 2014 3:20 PM

To: Stephen Nowak

Subject: RE: Former Pechiney Cast Plate Facility / 0106270030 / CEL 14-05-1740

Please add the following analyses:

Pb STLC and TCLP for sample #1056

Pb STLC for sample #1057

Cr STLC for samples #1058 and #1059

For all the STLC and TCLP analyses I have requested today, please provide as guick a turnaround as possible.

Thanks. Kim

From: Stephen Nowak [snowak@calscience.com]

Sent: Tuesday, May 27, 2014 6:01 PM

To: Costamagna, Daniel G; Holland, Kim; Conlan, Linda; Huang, Stephen; Lee, Zhur Subject: Former Pechiney Cast Plate Facility / 0106270030 / CEL 14-05-1740

Report, EDD, and Invoice are attached.

Stephen Nowak **Project Manager**

[cid:image004.jpg@01CF79D5.A4DBD8E0]

7440 Lincoln Way Garden Grove, CA 92841-1427 (714) 895-5494

www.calscience.comhttp://www.calscience.com/>

[cid:image003.jpg@01CF79D5.A4C8C610]

PRIVACY NOTICE:

This email (and/or the documents attached to it) is intended only for the use of the individual or entity to which it is addressed and may contain information that is privileged, confidential, or exempt from disclosure under applicable Federal or State law. If the reader of this message is not the intended recipient or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately and delete this e-mail and all attachments.

The information contained in this e-mail is intended only for the individual or entity to whom it is addressed. Its contents (including any attachments) may contain confidential and/or privileged information. If you are not an intended recipient you must not use, disclose, disseminate, copy or print its contents. If you receive this e-mail in error, please notify the sender by reply e-mail and delete and destroy the message.

	Di A steeren		LATE. July	NB 2749	
PROJECT NAME: ORANG FELLAND PROJECT NUMBER: M. O. J. J. C.	LABORATORY NAME: 0 CLIENT II	CLIENT INFORMATION:	JG REC	+	
RESULTS TO: LANGE CAROLS S	LABORATORY ADDRESS:				
TURNAROUND TIME: US HR					d
SAMPLE SHIPMENT METHOD:	LABORATORY CONTACT:		GEOTRACKER REQUIRED	YES	ON
ths country	LABORATORY PHONE NOMBER:		SITE SPECIFIC GLOBAL ID NO.		
SAMPLERS (SIGNATURE):	ANALYSES	SES			
	(25/03) (15/4) (15/08)		ater (W),	e19nis:	
SAMPLE SAMPLE NUMBER	8) Holl. Jorg) Jufru (43) 87J	CON	CONTAINER (S), W. Vapor (S) Triffered SIZE (S) Trif	Cooled MS/MSD Mo. of Con	ADDITIONAL COMMENTS
1 5/22/14 0845 #1056	メメ	404)	2 100	\ \	
).— ,	× ×		5	X	
> 0852 #1053	2		7	\ \	
238c				\ \ \	
> \ 0900 #\060	<i>> > > > > > > > > ></i>	7		7	
REI INQLIISHED BY: DATE TII	TIME RECEIVED BY:	DATE TIME TOTAL NUMBER OF CONTAINERS:	NTAINERS:	S	
7	SIGNATURE				
Windy wy	COMPANY:	SI. SI /21/5			
A 18 18 18 18 18 18 18 18 18 18 18 18 18	SIGNATURE:	5/2/ 17.25			
COMPANY: CF C	COMPANY: CEL	1/41			
SIGNATURE: PRINTED NAME:	PRINTED NAME:	121 Innova	□ :=		
COMPANY:	COMPANY:	Tel 949.642.0245	245 Fax 949.642.4474		

eturn to Contents

SAMPLE RECEIPT FORM Cooler ___ of ___

CLIENT: AMEC	DATE:	05/22/	14
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozen	en except se	ediment/tissue)
Temperature 2.9 °C - 0.3 °C (CF) = 2.6 °C		☐ Sample	
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)		•	
☐ Sample(s) outside temperature criteria but received on ice/chilled on same	day of samp	lina	
☐ Received at ambient temperature, placed on ice for transport by C		g.	
Ambient Temperature: Air Filter	ourior.	Checked by	. 304
Ambient remperature. 🗆 🗥 🗀 t inci			
CUSTODY SEALS INTACT:			2014
□ Cooler □ □ No (Not Intact) ☑ Not Present	: □ N/A	_	
□ Sample □ □ No (Not Intact) ☑ Not Present	-	Checked by:	: <u>8nc</u>
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	_		
COC document(s) received complete	/		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sampler's name indicated on COC	🗹		
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition			
Proper containers and sufficient volume for analyses requested	. 🗹		
Analyses received within holding time	. 🗹		
Aqueous samples received within 15-minute holding time			
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfides ☐ Dissolved Oxygen	🗆		
Proper preservation noted on COC or sample container	🗆		Ø
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace	🗆		Ø
Tedlar bag(s) free of condensation	🗆		Ø
Solid: ∠4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCore	es [®] □Terra	aCores [®] □	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGB	p □1AGB	□1AGB na ₂ □	1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGB	s □1PB	□1PBna □5	500PB
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na₂ □_		□	
Air: □Tedlar [®] □Canister Other: □ Trip Blank Lot#:	Labeled	/Checked by:	8ns
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: E Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ +N	invelope l	Reviewed by: _	659

CALSCIENCE

WORK ORDER NUMBER: 14-05-2144

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate / 0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

ResultLink >

Email your PM >

Approved for release on 06/02/2014 by:

Stephen Nowak Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Former Pechiney Cast Plate / 0106270030

Work Order Number: 14-05-2144

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data	12 12 21 29 31
5	Quality Control Sample Data.5.1 MS/MSD.5.2 LCS/LCSD.	36 36 40
6	Sample Analysis Summary	44
7	Glossary of Terms and Qualifiers	45
8	Chain of Custody/Sample Receipt Form	46

Work Order Narrative

Work Order: 14-05-2144 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 05/29/14. They were assigned to Work Order 14-05-2144.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: Project Name:

14-05-2144 Former Pechiney Cast Plate / 0106270030

PO Number:

Date/Time 05/29/14 18:00

Received:

Number of 9

Containers:

Linda Conlan Attn:

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
876-IIIB-O-SS-002	14-05-2144-1	05/29/14 08:42	1	Solid
#1066	14-05-2144-2	05/29/14 11:04	1	Solid
#1067	14-05-2144-3	05/29/14 11:06	1	Solid
#1068	14-05-2144-4	05/29/14 11:12	1	Solid
#1069	14-05-2144-5	05/29/14 11:15	1	Solid
#1070	14-05-2144-6	05/29/14 11:18	1	Solid
#1071	14-05-2144-7	05/29/14 11:22	1	Solid
#1072	14-05-2144-8	05/29/14 11:25	1	Solid
#1073	14-05-2144-9	05/29/14 11:26	1	Solid

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-2144

Project Name: Former Pechiney Cast Plate / 0106270030

Received: 05/29/14

Attn: Linda Conlan Page 1 of 7

lient SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
1066 (14-05-2144-2)						
Barium	0.644		0.505	mg/kg	EPA 6010B	EPA 3050B
Chromium	0.334		0.253	mg/kg	EPA 6010B	EPA 3050B
Lead	1.50		0.505	mg/kg	EPA 6010B	EPA 3050B
Nickel	0.288		0.253	mg/kg	EPA 6010B	EPA 3050B
Vanadium	0.314		0.253	mg/kg	EPA 6010B	EPA 3050B
Zinc	27.4		1.01	mg/kg	EPA 6010B	EPA 3050B
C19-C20	16000		10000	mg/kg	EPA 8015B (M)	EPA 3550B
C21-C22	19000		10000	mg/kg	EPA 8015B (M)	EPA 3550B
C23-C24	15000		10000	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	53000		10000	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	55000		10000	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	33000		10000	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	33000		10000	mg/kg	EPA 8015B (M)	EPA 3550B
C41-C44	17000		10000	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	240000		5.0	mg/kg	EPA 8015B (M)	EPA 3550B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-2144

Project Name: Former Pechiney Cast Plate / 0106270030

Received: 05/29/14

Attn: Linda Conlan Page 2 of 7

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1067 (14-05-2144-3)						
Arsenic	12.7		0.739	mg/kg	EPA 6010B	EPA 3050B
Barium	153		0.493	mg/kg	EPA 6010B	EPA 3050B
Chromium	41.6		0.246	mg/kg	EPA 6010B	EPA 3050B
Cobalt	14.2		0.246	mg/kg	EPA 6010B	EPA 3050B
Copper	117		0.493	mg/kg	EPA 6010B	EPA 3050B
Lead	161		0.493	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.629		0.246	mg/kg	EPA 6010B	EPA 3050B
Nickel	113		0.246	mg/kg	EPA 6010B	EPA 3050B
Vanadium	23.0		0.246	mg/kg	EPA 6010B	EPA 3050B
Zinc	266		0.985	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.155		0.0820	mg/kg	EPA 7471A	EPA 7471A Total
C9-C10	94		25	mg/kg	EPA 8015B (M)	EPA 3550B
C11-C12	760		25	mg/kg	EPA 8015B (M)	EPA 3550B
C13-C14	970		25	mg/kg	EPA 8015B (M)	EPA 3550B
C15-C16	280		25	mg/kg	EPA 8015B (M)	EPA 3550B
C17-C18	240		25	mg/kg	EPA 8015B (M)	EPA 3550B
C19-C20	260		25	mg/kg	EPA 8015B (M)	EPA 3550B
C21-C22	320		25	mg/kg	EPA 8015B (M)	EPA 3550B
C23-C24	420		25	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	430		25	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	590		25	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	230		25	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	140		25	mg/kg	EPA 8015B (M)	EPA 3550B
C41-C44	97		25	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	4800		5.0	mg/kg	EPA 8015B (M)	EPA 3550B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-2144

Project Name: Former Pechiney Cast Plate / 0106270030

Received: 05/29/14

Attn: Linda Conlan Page 3 of 7

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1068 (14-05-2144-4)						
Arsenic	15.4		0.746	mg/kg	EPA 6010B	EPA 3050B
Barium	13.4					
	_		0.498	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.286		0.249	mg/kg	EPA 6010B	EPA 3050B
Chromium	42.4		0.249	mg/kg	EPA 6010B	EPA 3050B
Cobalt	15.8		0.249	mg/kg	EPA 6010B	EPA 3050B
Copper	101		0.498	mg/kg	EPA 6010B	EPA 3050B
Lead	79.5		0.498	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.721		0.249	mg/kg	EPA 6010B	EPA 3050B
Nickel	301		0.249	mg/kg	EPA 6010B	EPA 3050B
Vanadium	28.5		0.249	mg/kg	EPA 6010B	EPA 3050B
Zinc	222		0.995	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.262		0.0781	mg/kg	EPA 7471A	EPA 7471A Total
C13-C14	1700		1000	mg/kg	EPA 8015B (M)	EPA 3550B
C19-C20	3400		1000	mg/kg	EPA 8015B (M)	EPA 3550B
C21-C22	3000		1000	mg/kg	EPA 8015B (M)	EPA 3550B
C23-C24	4000		1000	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	4500		1000	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	4300		1000	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	6100		1000	mg/kg	EPA 8015B (M)	EPA 3550B
C41-C44	1200		1000	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	31000		5.0	mg/kg	EPA 8015B (M)	EPA 3550B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-2144

Project Name: Former Pechiney Cast Plate / 0106270030

Received: 05/29/14

Attn: Linda Conlan Page 4 of 7

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1069 (14-05-2144-5)						
Arsenic	2.67		0.746	mg/kg	EPA 6010B	EPA 3050B
Barium	166		0.498	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.356		0.249	mg/kg	EPA 6010B	EPA 3050B
Chromium	20.8		0.249	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.9		0.249	mg/kg	EPA 6010B	EPA 3050B
Copper	108		0.498	mg/kg	EPA 6010B	EPA 3050B
Lead	109		0.498	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.398		0.490	mg/kg	EPA 6010B	EPA 3050B
Nickel	21.6		0.249		EPA 6010B	EPA 3050B
				mg/kg		
Vanadium	33.4		0.249	mg/kg	EPA 6010B	EPA 3050B
Zinc	166		0.995	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.153		0.0847	mg/kg	EPA 7471A	EPA 7471A Total
C21-C22	19		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C23-C24	14		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	37		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	57		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	22		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	17		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	170		5.0	mg/kg	EPA 8015B (M)	EPA 3550B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-2144

Project Name: Former Pechiney Cast Plate / 0106270030

Received: 05/29/14

Attn: Linda Conlan Page 5 of 7

Client SampleID		_				
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
#1070 (14-05-2144-6)						
Antimony	293		0.754	mg/kg	EPA 6010B	EPA 3050B
Arsenic	39.9		0.754	mg/kg	EPA 6010B	EPA 3050B
Barium	3520		0.503	mg/kg	EPA 6010B	EPA 3050B
Cadmium	16.5		0.503	mg/kg	EPA 6010B	EPA 3050B
Chromium	123		0.251	mg/kg	EPA 6010B	EPA 3050B
Cobalt	38.4		0.251	mg/kg	EPA 6010B	EPA 3050B
Copper	1250		0.503	mg/kg	EPA 6010B	EPA 3050B
Lead	13500		50.3	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	4.51		0.251	mg/kg	EPA 6010B	EPA 3050B
Nickel	405		0.251	mg/kg	EPA 6010B	EPA 3050B
Vanadium	22.4		0.251	mg/kg	EPA 6010B	EPA 3050B
Zinc	12500		101	mg/kg	EPA 6010B	EPA 3050B
Mercury	4.16		0.820	mg/kg	EPA 7471A	EPA 7471A Total
C21-C22	130		25	mg/kg	EPA 8015B (M)	EPA 3550B
C23-C24	25		25	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	230		25	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	330		25	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	120		25	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	120		25	mg/kg	EPA 8015B (M)	EPA 3550B
C41-C44	41		25	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	990		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
Aroclor-1248	490		50	ug/kg	EPA 8082	EPA 3540C

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-2144

Project Name: Former Pechiney Cast Plate / 0106270030

Received: 05/29/14

Attn: Linda Conlan Page 6 of 7

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1071 (14-05-2144-7)						
Antimony	24.8		0.743	mg/kg	EPA 6010B	EPA 3050B
Arsenic	14.0		0.743	mg/kg	EPA 6010B	EPA 3050B
Barium	688		0.495	mg/kg	EPA 6010B	EPA 3050B
Cadmium	4.18		0.495	mg/kg	EPA 6010B	EPA 3050B
Chromium	138		0.248	mg/kg	EPA 6010B	EPA 3050B
Cobalt	33.8		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper	933		0.495	mg/kg	EPA 6010B	EPA 3050B
Lead	1610		0.495	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	5.69		0.248	mg/kg	EPA 6010B	EPA 3050B
Nickel	276		0.248	mg/kg	EPA 6010B	EPA 3050B
Vanadium	25.4		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc	2650		0.990	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.735		0.0806	mg/kg	EPA 7471A	EPA 7471A Total
C23-C24	37		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	25		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	48		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	8.2		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	120		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
#1072 (14-05-2144-8)						
Barium	79.7		0.503	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.360		0.251	mg/kg	EPA 6010B	EPA 3050B
Chromium	9.92		0.251	mg/kg	EPA 6010B	EPA 3050B
Cobalt	2.61		0.251	mg/kg	EPA 6010B	EPA 3050B
Copper	75.7		0.503	mg/kg	EPA 6010B	EPA 3050B
Lead	88.5		0.503	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.522		0.251	mg/kg	EPA 6010B	EPA 3050B
Nickel	18.8		0.251	mg/kg	EPA 6010B	EPA 3050B
Vanadium	3.47		0.251	mg/kg	EPA 6010B	EPA 3050B
Zinc	233		1.01	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.392		0.0781	mg/kg	EPA 7471A	EPA 7471A Total
C25-C28	9.2		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	10		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	6.5		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	41		5.0	mg/kg	EPA 8015B (M)	EPA 3550B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-05-2144

Project Name: Former Pechiney Cast Plate / 0106270030

Received: 05/29/14

Attn: Linda Conlan Page 7 of 7

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
#1073 (14-05-2144-9)						
Antimony	2050		0.746	mg/kg	EPA 6010B	EPA 3050B
Arsenic	32.8		0.746	mg/kg	EPA 6010B	EPA 3050B
Barium	202		0.498	mg/kg	EPA 6010B	EPA 3050B
Chromium	21.5		0.249	mg/kg	EPA 6010B	EPA 3050B
Cobalt	9.66		0.249	mg/kg	EPA 6010B	EPA 3050B
Copper	198		0.498	mg/kg	EPA 6010B	EPA 3050B
Lead	16100		49.8	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	1.29		0.249	mg/kg	EPA 6010B	EPA 3050B
Nickel	25.2		0.249	mg/kg	EPA 6010B	EPA 3050B
Silver	0.617		0.249	mg/kg	EPA 6010B	EPA 3050B
Vanadium	27.3		0.249	mg/kg	EPA 6010B	EPA 3050B
Zinc	389		0.995	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.297		0.0806	mg/kg	EPA 7471A	EPA 7471A Total
C29-C32	32		25	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	38		25	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	72		25	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	180		5.0	mg/kg	EPA 8015B (M)	EPA 3550B

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

n-Octacosane

Date Received: Work Order: Preparation: Method:

14-05-2144 EPA 3550B EPA 8015B (M)

05/29/14

Units:

mg/kg Page 1 of 9

Project: Former Pechiney Cast Plate / 0106270030

Client Sample No	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1066		14-05-2144-2-A	05/29/14 11:04	Solid	GC 47	05/30/14	05/30/14 18:23	140530B01
Comment(s):	- The total concentration in	cludes individual carl	oon range conc	entrations (estimated), if any	, below the RL r	eported as ND.	
<u>Parameter</u>			<u>Result</u>	<u> </u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>fiers</u>
C6			ND	1	0000	100		
C7			ND	1	0000	100		
C8			ND	1	0000	100		
C9-C10			ND	1	0000	100		
C11-C12			ND	1	0000	100		
C13-C14			ND	1	0000	100		
C15-C16			ND	1	0000	100		
C17-C18			ND	1	0000	100		
C19-C20			16000	1	0000	100		
C21-C22			19000	1	0000	100		
C23-C24			15000	1	0000	100		
C25-C28			53000	1	0000	100		
C29-C32			55000	1	0000	100		
C33-C36			33000	1	0000	100		
C37-C40			33000	1	0000	100		
C41-C44			17000	1	0000	100		
C6-C44 Total			240000	5	5.0	1.00		
<u>Surrogate</u>			Rec. (%)	<u>0</u>	Control Limits	Qualifiers		

133

61-145

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-2144 EPA 3550B EPA 8015B (M)

Units:

mg/kg

05/29/14

Project: Former Pechiney Cast Plate / 0106270030

Page 2 of 9

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
#1067		14-05-2144-3-A	05/29/14 11:06	Solid	GC 47	05/30/14	05/30/14 18:40	140530B01		
Comment(s): - The total concentration includes individual carbon range concentrations (estimated), if any, below the RL reported as ND.										
<u>Parameter</u>			Result	RL	=	<u>DF</u>	Qua	<u>llifiers</u>		
C6			ND	25	i	5.00				
C7			ND	25		5.00				
C8			ND	25		5.00				
C9-C10			94	25	i	5.00				
C11-C12			760	25	i	5.00				
C13-C14			970	25	i	5.00				
C15-C16			280	25	i	5.00				
C17-C18			240	25	i	5.00				
C19-C20			260	25	i	5.00				
C21-C22			320	25	i	5.00				
C23-C24			420	25	i	5.00				
C25-C28			430	25	i	5.00				
C29-C32			590	25	i	5.00				
C33-C36			230	25	i	5.00				
C37-C40			140	25	i	5.00				
C41-C44			97	25		5.00				
C6-C44 Total			4800	5.0)	1.00				
<u>Surrogate</u>			Rec. (%)	<u>Cc</u>	ontrol Limits	Qualifiers				
n-Octacosane			96	61	-145					

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-2144 EPA 3550B EPA 8015B (M)

Units:

mg/kg

05/29/14

Project: Former Pechiney Cast Plate / 0106270030

Page 3 of 9

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1068		14-05-2144-4-A	05/29/14 11:12	Solid	GC 47	05/30/14	05/30/14 18:05	140530B01
Comment(s):	- The total concentration	includes individual car	rbon range cond	entrations (estimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			<u>Result</u>	<u> </u>	<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
C6			ND	1	000	20.0		
C7			ND	1	000	20.0		
C8			ND	1	000	20.0		
C9-C10			ND	1	000	20.0		
C11-C12			ND	1	000	20.0		
C13-C14			1700	1	000	20.0		
C15-C16			ND	1	000	20.0		
C17-C18			ND	1	000	20.0		
C19-C20			3400	1	000	20.0		
C21-C22			3000	1	000	20.0		
C23-C24			4000	1	000	20.0		
C25-C28			4500	1	000	20.0		
C29-C32			4300	1	000	20.0		
C33-C36			6100	1	000	20.0		
C37-C40			ND	1	000	20.0		
C41-C44			1200	1	000	20.0		
C6-C44 Total			31000	5	5.0	1.00		
Surrogate			Rec. (%)	<u>C</u>	Control Limits	Qualifiers		
n-Octacosane			108	6	31-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-2144 EPA 3550B

Units:

EPA 8015B (M) mg/kg

05/29/14

Project: Former Pechiney Cast Plate / 0106270030

Page 4 of 9

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1069		14-05-2144-5-A	05/29/14 11:15	Solid	GC 47	05/30/14	05/30/14 17:30	140530B01
Comment(s):	- The total concent	ration includes individual car	rbon range cond	centrations (es	timated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
C6			ND	5.0		1.00		
C7			ND	5.0		1.00		
C8			ND	5.0		1.00		
C9-C10			ND	5.0		1.00		
C11-C12			ND	5.0		1.00		
C13-C14			ND	5.0		1.00		
C15-C16			ND	5.0		1.00		
C17-C18			ND	5.0		1.00		
C19-C20			ND	5.0		1.00		
C21-C22			19	5.0		1.00		
C23-C24			14	5.0		1.00		
C25-C28			37	5.0		1.00		
C29-C32			57	5.0		1.00		
C33-C36			22	5.0		1.00		
C37-C40			17	5.0		1.00		
C41-C44			ND	5.0		1.00		
C6-C44 Total			170	5.0		1.00		
<u>Surrogate</u>			Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
n-Octacosane			89	61-	145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

EPA 3550B EPA 8015B (M)

05/29/14

mg/kg

14-05-2144

Project: Former Pechiney Cast Plate / 0106270030

Page 5 of 9

Client Sample	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1070		14-05-2144-6-A	05/29/14 11:18	Solid	GC 47	05/30/14	05/30/14 18:57	140530B01
Comment(s):	- The total concentration	n includes individual ca	rbon range cond	centrations (es	timated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
C6			ND	25		5.00		
C7			ND	25		5.00		
C8			ND	25		5.00		
C9-C10			ND	25		5.00		
C11-C12			ND	25		5.00		
C13-C14			ND	25		5.00		
C15-C16			ND	25		5.00		
C17-C18			ND	25		5.00		
C19-C20			ND	25		5.00		
C21-C22			130	25		5.00		
C23-C24			25	25		5.00		
C25-C28			230	25		5.00		
C29-C32			330	25		5.00		
C33-C36			120	25		5.00		
C37-C40			120	25		5.00		
C41-C44			41	25		5.00		
C6-C44 Total			990	5.0		1.00		
<u>Surrogate</u>			Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
n-Octacosane			78	61-	145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

14-05-2144 EPA 3550B EPA 8015B (M)

05/29/14

Units: mg/kg Page 6 of 9

Project: Former Pechiney Cast Plate / 0106270030

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1071		14-05-2144-7-A	05/29/14 11:22	Solid	GC 47	05/30/14	05/30/14 17:12	140530B01
Comment(s):	- The total concentration i	ncludes individual car	bon range cond	entrations (es	timated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
C6			ND	5.0		1.00		
C7			ND	5.0		1.00		
C8			ND	5.0		1.00		
C9-C10			ND	5.0		1.00		
C11-C12			ND	5.0		1.00		
C13-C14			ND	5.0		1.00		
C15-C16			ND	5.0		1.00		
C17-C18			ND	5.0		1.00		
C19-C20			ND	5.0		1.00		
C21-C22			ND	5.0		1.00		
C23-C24			37	5.0		1.00		
C25-C28			25	5.0		1.00		
C29-C32			48	5.0		1.00		
C33-C36			ND	5.0		1.00		
C37-C40			8.2	5.0		1.00		
C41-C44			ND	5.0		1.00		
C6-C44 Total			120	5.0		1.00		
<u>Surrogate</u>			Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane			61	61-	145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-2144 EPA 3550B EPA 8015B (M)

05/29/14

Units:

mg/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 7 of 9

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1072		14-05-2144-8-A	05/29/14 11:25	Solid	GC 47	05/30/14	05/30/14 15:44	140530B01
Comment(s):	- The total concentrati	ion includes individual car	rbon range con	centrations (est	imated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
C6			ND	4.9		1.00		
C7			ND	4.9		1.00		
C8			ND	4.9		1.00		
C9-C10			ND	4.9		1.00		
C11-C12			ND	4.9		1.00		
C13-C14			ND	4.9		1.00		
C15-C16			ND	4.9		1.00		
C17-C18			ND	4.9		1.00		
C19-C20			ND	4.9		1.00		
C21-C22			ND	4.9		1.00		
C23-C24			ND	4.9		1.00		
C25-C28			9.2	4.9		1.00		
C29-C32			10	4.9		1.00		
C33-C36			6.5	4.9		1.00		
C37-C40			ND	4.9		1.00		
C41-C44			ND	4.9		1.00		
C6-C44 Total			41	5.0		1.00		
<u>Surrogate</u>			Rec. (%)	Con	trol Limits	Qualifiers		
n-Octacosane			90	61-1	145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-2144 EPA 3550B EPA 8015B (M)

Units:

mg/kg

05/29/14

Project: Former Pechiney Cast Plate / 0106270030

Page 8 of 9

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1073		14-05-2144-9-A	05/29/14 11:26	Solid	GC 47	05/30/14	05/30/14 19:14	140530B01
Comment(s):	- The total concent	ration includes individual car	rbon range cond	centrations (est	timated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
C6			ND	25		5.00		
C7			ND	25		5.00		
C8			ND	25		5.00		
C9-C10			ND	25		5.00		
C11-C12			ND	25		5.00		
C13-C14			ND	25		5.00		
C15-C16			ND	25		5.00		
C17-C18			ND	25		5.00		
C19-C20			ND	25		5.00		
C21-C22			ND	25		5.00		
C23-C24			ND	25		5.00		
C25-C28			ND	25		5.00		
C29-C32			32	25		5.00		
C33-C36			38	25		5.00		
C37-C40			72	25		5.00		
C41-C44			ND	25		5.00		
C6-C44 Total			180	5.0		1.00		
Surrogate			Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
n-Octacosane			86	61-	145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: 05/29/14 Work Order: 14-05-2144 EPA 3550B Preparation: Method: EPA 8015B (M)

Units:

mg/kg Page 9 of 9

Project: Former Pechiney Cast Plate / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-932	N/A	Solid	GC 47	05/30/14	05/30/14 12:32	140530B01
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
C6		ND	5.0		1.00		
C7		ND	5.0		1.00		
C8		ND	5.0		1.00		
C9-C10		ND	5.0		1.00		
C11-C12		ND	5.0		1.00		
C13-C14		ND	5.0		1.00		
C15-C16		ND	5.0		1.00		
C17-C18		ND	5.0		1.00		
C19-C20		ND	5.0		1.00		
C21-C22		ND	5.0		1.00		
C23-C24		ND	5.0		1.00		
C25-C28		ND	5.0		1.00		
C29-C32		ND	5.0		1.00		
C33-C36		ND	5.0		1.00		
C37-C40		ND	5.0		1.00		
C41-C44		ND	5.0		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
n-Octacosane		89	61-	145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

14-05-2144 EPA 3050B EPA 6010B

05/29/14

mg/kg

Units: m Page 1 of 8

Dan!4		D = = l= ! = = =	. O 4 DI - 4 -	/ 04 000 70000
Project:	Former	Pecnine	/ Cast Plate /	0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1066	14-05-2144-2-A	05/29/14 11:04	Solid	ICP 7300	05/29/14	05/30/14 16:55	140529L02
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND		0.758	1.01		
Arsenic		ND		0.758	1.01		
Barium		0.644		0.505	1.01		
Beryllium		ND		0.253	1.01		
Cadmium		ND		0.505	1.01		
Chromium		0.334		0.253	1.01		
Cobalt		ND		0.253	1.01		
Copper		ND		0.505	1.01		
Lead		1.50		0.505	1.01		
Molybdenum		ND		0.253	1.01		
Nickel		0.288		0.253	1.01		
Selenium		ND		0.758	1.01		
Silver		ND		0.253	1.01		
Thallium		ND		0.758	1.01		
Vanadium		0.314		0.253	1.01		
Zinc		27.4		1.01	1.01		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/29/14 14-05-2144 EPA 3050B EPA 6010B

Units: mg/kg Page 2 of 8

Project: Former Pechiney Cast Plate / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1067	14-05-2144-3-A	05/29/14 11:06	Solid	ICP 7300	05/29/14	05/30/14 16:56	140529L02
Parameter		Result	ļ	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.739	0.985		
Arsenic		12.7	(0.739	0.985		
Barium		153	(0.493	0.985		
Beryllium		ND	(0.246	0.985		
Cadmium		ND	(0.493	0.985		
Chromium		41.6	(0.246	0.985		
Cobalt		14.2	(0.246	0.985		
Copper		117	(0.493	0.985		
Lead		161	(0.493	0.985		
Molybdenum		0.629	(0.246	0.985		
Nickel		113	(0.246	0.985		
Selenium		ND	(0.739	0.985		
Silver		ND	(0.246	0.985		
Thallium		ND	(0.739	0.985		
Vanadium		23.0	(0.246	0.985		
Zinc		266	(0.985	0.985		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-2144 EPA 3050B EPA 6010B

05/29/14

Units:

mg/kg Page 3 of 8

Project: Former Pechiney Cast Plate / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1068	14-05-2144-4-A	05/29/14 11:12	Solid	ICP 7300	05/29/14	05/30/14 16:58	140529L02
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	(0.746	0.995		
Arsenic		15.4	(0.746	0.995		
Barium		148	(0.498	0.995		
Beryllium		0.286	(0.249	0.995		
Cadmium		ND	(0.498	0.995		
Chromium		42.4	(0.249	0.995		
Cobalt		15.8	(0.249	0.995		
Copper		101	(0.498	0.995		
Lead		79.5	(0.498	0.995		
Molybdenum		0.721	(0.249	0.995		
Nickel		301	(0.249	0.995		
Selenium		ND	(0.746	0.995		
Silver		ND	(0.249	0.995		
Thallium		ND	(0.746	0.995		
Vanadium		28.5	(0.249	0.995		
Zinc		222	(0.995	0.995		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Client Sample Number

#1069

Date Received: Work Order: Preparation: Method:

14-05-2144 EPA 3050B EPA 6010B

05/29/14

Units:

Matrix

Solid

Instrument

ICP 7300

Date/Time Collected

05/29/14

mg/kg Page 4 of 8

140529L02

Project: Former Pechiney Cast Plate / 0106270030

Lab Sample Number

14-05-2144-5-A

Date/Time QC Batch ID Analyzed

05/30/14

Date Prepared

05/29/14

		11:15				16:59	
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qu	alifiers
Antimony		ND		0.746	0.995		
Arsenic		2.67		0.746	0.995		
Barium		166		0.498	0.995		
Beryllium		0.356		0.249	0.995		
Cadmium		ND		0.498	0.995		
Chromium		20.8		0.249	0.995		
Cobalt		11.9		0.249	0.995		
Copper		108		0.498	0.995		
Lead		109		0.498	0.995		
Molybdenum		0.398		0.249	0.995		
Nickel		21.6		0.249	0.995		
Selenium		ND		0.746	0.995		
Silver		ND		0.249	0.995		
Thallium		ND		0.746	0.995		
Vanadium		33.4		0.249	0.995		
Zinc		166		0.995	0.995		
#1070	14-05-2144-6-A	05/29/14 11:18	Solid	ICP 7300	05/29/14	05/30/14 17:04	140529L02
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qu	alifiers
Antimony		293		0.754	1.01		
Arsenic		39.9		0.754	1.01		
Barium		3520		0.503	1.01		
Beryllium		ND		0.251	1.01		
Cadmium		16.5		0.503	1.01		
Chromium		123		0.251	1.01		
Cobalt		38.4		0.251	1.01		
Copper		1250		0.503	1.01		
Molybdenum		4.51		0.251	1.01		
Nickel		405		0.251	1.01		
Selenium		ND		0.754	1.01		
Silver		ND		0.251	1.01		

RL: Reporting Limit.

Thallium

Vanadium

DF: Dilution Factor.

MDL: Method Detection Limit.

0.754

0.251

1.01

1.01

ND

22.4

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

05/29/14 14-05-2144 **EPA 3050B EPA 6010B**

Units:

mg/kg Page 5 of 8

Project: Former Pechiney Cast Plate / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1070	14-05-2144-6-A	05/29/14 11:18	Solid	ICP 7300	05/29/14	05/30/14 17:24	140529L02
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	alifiers
Lead		13500	50	0.3	101		
Zinc		12500	10	01	101		

#1071	14-05-2144-7-A	05/29/14 11:22	Solid ICP 7300	05/29/14	05/30/14 17:05	140529L02
Parameter		Result	<u>RL</u>	DF	Qua	<u>lifiers</u>
Antimony		24.8	0.743	0.990		
Arsenic		14.0	0.743	0.990		
Barium		688	0.495	0.990		
Beryllium		ND	0.248	0.990		
Cadmium		4.18	0.495	0.990		
Chromium		138	0.248	0.990		
Cobalt		33.8	0.248	0.990		
Copper		933	0.495	0.990		
Lead		1610	0.495	0.990		
Molybdenum		5.69	0.248	0.990		
Nickel		276	0.248	0.990		
Selenium		ND	0.743	0.990		
Silver		ND	0.248	0.990		
Thallium		ND	0.743	0.990		
Vanadium		25.4	0.248	0.990		
Zinc		2650	0.990	0.990		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/29/14 14-05-2144 EPA 3050B EPA 6010B

Units: mg/kg
Page 6 of 8

Project: Former Pechiney Cast Plate / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1072	14-05-2144-8-A	05/29/14 11:25	Solid	ICP 7300	05/29/14	05/30/14 17:06	140529L02
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().754	1.01		
Arsenic		ND	().754	1.01		
Barium		79.7	(0.503	1.01		
Beryllium		0.360	().251	1.01		
Cadmium		ND	(0.503	1.01		
Chromium		9.92	().251	1.01		
Cobalt		2.61	().251	1.01		
Copper		75.7	(0.503	1.01		
Lead		88.5	(0.503	1.01		
Molybdenum		0.522	().251	1.01		
Nickel		18.8	().251	1.01		
Selenium		ND	().754	1.01		
Silver		ND	().251	1.01		
Thallium		ND	().754	1.01		
Vanadium		3.47	().251	1.01		
Zinc		233	1	1.01	1.01		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-2144 EPA 3050B EPA 6010B

05/29/14

mg/kg

Units: m Page 7 of 8

Project: Former Pechiney Cast Plate / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1073	14-05-2144-9-A	05/29/14 11:26	Solid	ICP 7300	05/29/14	05/30/14 17:07	140529L02
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	alifiers
Antimony		2050	(0.746	0.995		
Arsenic		32.8	(0.746	0.995		
Barium		202	(0.498	0.995		
Beryllium		ND	(0.249	0.995		
Cadmium		ND	(0.498	0.995		
Chromium		21.5	(0.249	0.995		
Cobalt		9.66	(0.249	0.995		
Copper		198	(0.498	0.995		
Molybdenum		1.29	(0.249	0.995		
Nickel		25.2	(0.249	0.995		
Selenium		ND	(0.746	0.995		
Silver		0.617	(0.249	0.995		
Thallium		ND	(0.746	0.995		
Vanadium		27.3	(0.249	0.995		
Zinc		389		0.995	0.995		

#1073	14-05-2144-9-A	05/29/14 11:26	Solid	ICP 7300	05/29/14	05/30/14 17:26	140529L02
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>		Qu	<u>alifiers</u>
l ead		16100	1	0.8	99.5		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

Units:

mg/kg Page 8 of 8

05/29/14

14-05-2144

EPA 3050B

EPA 6010B

Project: Former Pechiney Cast Plate / 0106270030

Time QC Batch II

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-18425	N/A	Solid	ICP 7300	05/29/14	05/30/14 16:33	140529L02
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	C).750	1.00		
Arsenic		ND	C).750	1.00		
Barium		ND	C).500	1.00		
Beryllium		ND	C	0.250	1.00		
Cadmium		ND	C).500	1.00		
Chromium		ND	C).250	1.00		
Cobalt		ND	C	0.250	1.00		
Copper		ND	C).500	1.00		
Lead		ND	C).500	1.00		
Molybdenum		ND	C	0.250	1.00		
Nickel		ND	C	0.250	1.00		
Selenium		ND	C).750	1.00		
Silver		ND	C	0.250	1.00		
Thallium		ND	C).750	1.00		
Vanadium		ND	C).250	1.00		
Zinc		ND	1	.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

14-05-2144 EPA 7471A Total EPA 7471A mg/kg

05/29/14

Project: Former Pechiney Cast Plate / 0106270030

Page 1 of 2

<u> </u>							
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1066	14-05-2144-2-A	05/29/14 11:04	Solid	Mercury 04	05/29/14	05/29/14 20:55	140529L06
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0794	1.00		
#1067	14-05-2144-3-A	05/29/14 11:06	Solid	Mercury 04	05/29/14	05/29/14 20:57	140529L06
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		0.155		0.0820	1.00		
#1068	14-05-2144-4-A	05/29/14 11:12	Solid	Mercury 04	05/29/14	05/29/14 20:59	140529L06
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		0.262		0.0781	1.00		
#1069	14-05-2144-5-A	05/29/14 11:15	Solid	Mercury 04	05/29/14	05/29/14 21:01	140529L06
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		0.153		0.0847	1.00		
#1070	14-05-2144-6-A	05/29/14 11:18	Solid	Mercury 04	05/29/14	05/30/14 16:07	140529L06
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		4.16		0.820	10.0		
#1071	14-05-2144-7-A	05/29/14 11:22	Solid	Mercury 04	05/29/14	05/29/14 21:06	140529L06
<u>Parameter</u>		Result		RL	DF	Qua	alifiers
Mercury		0.735		0.0806	1.00		
#1072	14-05-2144-8-A	05/29/14 11:25	Solid	Mercury 04	05/29/14	05/29/14 21:08	140529L06
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	<u>alifiers</u>
Mercury		0.392		0.0781	1.00		
#1073	14-05-2144-9-A	05/29/14 11:26	Solid	Mercury 04	05/29/14	05/29/14 21:10	140529L06
_							
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>alifiers</u>

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

14-05-2144 EPA 7471A Total EPA 7471A mg/kg

05/29/14

Project: Former Pechiney Cast Plate / 0106270030

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-272-268	N/A	Solid	Mercury 04	05/29/14	05/29/14 20:23	140529L06
<u>Parameter</u>		Result	R	<u>L</u>	<u>DF</u>	Qua	<u>lifiers</u>
Mercury		ND	0	.0833	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/29/14 14-05-2144 EPA 3540C EPA 8082

Units: ug/kg
Page 1 of 5

Project: Former Pechiney Cast Plate / 0106270030

Client Sample Number		Sample nber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1066	14-0	05-2144-2-A	05/29/14 11:04	Solid	GC 58	05/29/14	05/31/14 10:51	140529L13
Comment(s): - The	reporting limit is elevated r	esulting from ma	atrix interferen	ce.				
<u>Parameter</u>			Result	<u>F</u>	<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Aroclor-1016			ND	5	500	1.00		
Aroclor-1221			ND	5	500	1.00		
Aroclor-1232			ND	5	500	1.00		
Aroclor-1242			ND	5	500	1.00		
Aroclor-1248			ND	5	500	1.00		
Aroclor-1254			ND	5	500	1.00		
Aroclor-1260			ND	5	500	1.00		
Aroclor-1262			ND	5	500	1.00		
Aroclor-1268			ND	5	500	1.00		
Surrogate			Rec. (%)	<u>(</u>	Control Limits	Qualifiers		
Decachlorobiphenyl			62	6	60-125			
2,4,5,6-Tetrachloro-m->	ylene		81	5	50-130			

#1067	14-05-2144-3-A	05/29/14 11:06	Solid GC 58	05/29/14	05/31/14 11:09	140529L13
Parameter		Result	<u>RL</u>	<u>DF</u>	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		128	60-125	2,7		
2,4,5,6-Tetrachloro-m-Xylene		97	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

2,4,5,6-Tetrachloro-m-Xylene

Date Received: Work Order: Preparation: Method:

50-130

05/29/14 14-05-2144 EPA 3540C EPA 8082

Page 2 of 5

ug/kg

Units:

Project: Former Pechiney Cast Plate / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1068	14-05-2144-4-A	05/29/14 11:12	Solid	GC 58	05/29/14	05/31/14 11:44	140529L13
Parameter		Result	<u>RL</u>		DF	Qua	alifiers
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
Decachlorobiphenyl		113	60-	125			

#1069	14-05-2144-5-A	05/29/14 11:15	Solid GC 58	05/29/14	05/31/14 12:02	140529L13
Parameter		Result	<u>RL</u>	<u>DF</u>	Qual	<u>ifiers</u>
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		101	60-125			
2,4,5,6-Tetrachloro-m-Xylene		93	50-130			

98

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

05/29/14 14-05-2144 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 3 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1070	14-05-2144-6-A	05/29/14 11:18	Solid	GC 58	05/29/14	05/31/14 21:08	140529L13
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		490	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		105	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		107	50-	130			

#1071	14-05-2144-7-A	05/29/14 11:22	Solid GC 58	05/29/14	05/31/14 140529L13 12:37
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Aroclor-1016		ND	50	1.00	
Aroclor-1221		ND	50	1.00	
Aroclor-1232		ND	50	1.00	
Aroclor-1242		ND	50	1.00	
Aroclor-1248		ND	50	1.00	
Aroclor-1254		ND	50	1.00	
Aroclor-1260		ND	50	1.00	
Aroclor-1262		ND	50	1.00	
Aroclor-1268		ND	50	1.00	
Surrogate		Rec. (%)	Control Limits	Qualifiers	
Decachlorobiphenyl		119	60-125		
2,4,5,6-Tetrachloro-m-Xylene		98	50-130		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

05/29/14 14-05-2144 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 4 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1072	14-05-2144-8-A	05/29/14 11:25	Solid	GC 58	05/29/14	05/31/14 12:56	140529L13
Parameter		Result	<u>RL</u>		DF	Qua	alifiers
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Cor	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		113	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		106	50-	130			

#1073	14-05-2144-9-A	05/29/14 11:26	Solid GC 58	05/29/14	05/31/14 13:14	140529L13
Parameter		Result	<u>RL</u>	<u>DF</u>	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		109	60-125			
2,4,5,6-Tetrachloro-m-Xylene		103	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/29/14 14-05-2144 EPA 3540C EPA 8082

Units:

ug/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 5 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-02-003-258	N/A	Solid	GC 58	05/29/14	05/31/14 09:57	140529L13
Parameter		Result	<u>RL</u>	•	<u>DF</u>	Qua	lifiers
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Col	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		112	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		110	50-	130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation:

14-05-2144 EPA 3550B

05/29/14

Method:

EPA 8015B (M)

Project: Former Pechiney Cast Plate / 0106270030

Page 1 of 4

Quality Control Sample ID	Туре		Matrix	Inst	trument	Date Prepared	Date Ana	lyzed	MS/MSD Batch Number		
14-05-2145-5	Sample	•		GC	47	05/30/14	05/30/14	13:58	140530S01		
14-05-2145-5	Matrix Spike	Matrix Spike		Solid GC 4		05/30/14	05/30/14	13:06	140530S01		
14-05-2145-5	Matrix Spike	Matrix Spike Duplicate		GC	47	05/30/14	05/30/14	13:23	140530S01		
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS MSD Conc.		MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers	
TPH as Diesel			412.1	103	409.0	102	64-130	1	0-15		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/29/14 14-05-2144 EPA 3050B EPA 6010B

Project: Former Pechiney Cast Plate / 0106270030

Page 2 of 4

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
14-05-2145-10	Sample		Solid	ICP	7300	05/29/14	05/30/14	16:52	140529S02	
14-05-2145-10	Matrix Spike		Solid	ICP	7300	05/29/14	05/30/14	16:36	140529S02	
14-05-2145-10	Matrix Spike	Duplicate	Solid	ICP	7300	05/29/14	05/30/14	16:37	140529802	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	15.47	62	12.33	49	50-115	23	0-20	3,4
Arsenic	1.219	25.00	27.13	104	28.68	110	75-125	6	0-20	
Barium	131.1	25.00	161.1	4X	173.3	4X	75-125	4X	0-20	Q
Beryllium	0.3484	25.00	26.72	105	27.25	108	75-125	2	0-20	
Cadmium	ND	25.00	25.33	101	25.77	103	75-125	2	0-20	
Chromium	15.46	25.00	42.54	108	44.62	117	75-125	5	0-20	
Cobalt	10.83	25.00	37.20	105	39.20	113	75-125	5	0-20	
Copper	15.54	25.00	42.86	109	45.73	121	75-125	6	0-20	
Lead	1.288	25.00	25.84	98	26.73	102	75-125	3	0-20	
Molybdenum	ND	25.00	25.48	102	25.85	103	75-125	1	0-20	
Nickel	11.78	25.00	37.73	104	39.89	112	75-125	6	0-20	
Selenium	ND	25.00	21.76	87	22.64	91	75-125	4	0-20	
Silver	ND	12.50	13.14	105	13.29	106	75-125	1	0-20	
Thallium	ND	25.00	19.65	79	20.00	80	75-125	2	0-20	
Vanadium	33.18	25.00	63.20	120	65.64	130	75-125	4	0-20	3
Zinc	46.60	25.00	72.94	105	76.97	122	75-125	5	0-20	

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-2144 EPA 7471A Total EPA 7471A

05/29/14

Project: Former Pechiney Cast Plate / 0106270030

Page 3 of 4

Quality Control Sample ID	Туре		Matrix	Ir	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
14-05-1968-1	Sample		Sedimen	t N	Mercury 04	05/29/14	05/29/14 20:28		140529S06	
14-05-1968-1	Matrix Spike	•		t N	lercury 04	05/29/14	05/29/14 20:3		140529S06	
14-05-1968-1	Matrix Spike Duplicate		Sedimen	t N	lercury 04	05/29/14	05/29/14	20:32	140529S06	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	0.1071	0.8350	0.9001	95	0.9719	104	76-136	8	0-16	

Page 4 of 4

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure Date Received: 05/29/14
121 Innovation Drive, Suite 200 Work Order: 14-05-2144
Irvine, CA 92617-3094 Preparation: EPA 3540C
Method: EPA 8082

Project: Former Pechiney Cast Plate / 0106270030

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
#1071	Sample	•		GC	58	05/29/14	05/31/14	12:37	140529S13	
#1071	Matrix Spike	atrix Spike S		GC	58 05/29/14		05/31/14 15:19		140529S13	
#1071	Matrix Spike	atrix Spike Duplicate		GC	58	05/29/14	05/31/14	15:37	140529S13	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Aroclor-1016	ND	100.0	78.62	79	85.64	86	50-135	9	0-25	
Aroclor-1260	ND	100.0	100.3	100	85.54	86	50-135	16	0-25	

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation:

14-05-2144 EPA 3550B

05/29/14

Method:

EPA 8015B (M)

Project: Former Pechiney Cast Plate / 0106270030

Page 1 of 4

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-490-932	LCS	Solid	GC 47	05/30/14	05/30/14 12:49	140530B01
<u>Parameter</u>		Spike Added	Conc. Recovered	ed LCS %Re	ec. %Rec	. CL Qualifiers
TPH as Diesel		400.0	348.4	87	75-123	3

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

14-05-2144 EPA 3050B EPA 6010B

05/29/14

Project: Former Pechiney Cast Plate / 0106270030

Page 2 of 4

Quality Control Sample ID	Type	Matrix	Instrumen	t Date Prep	ared Date Ana	lyzed LCS Bato	h Number
097-01-002-18425	LCS	Solid	ICP 7300	05/29/14	05/30/14	16:34 140529L	02
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		25.00	26.81	107	80-120	73-127	
Arsenic		25.00	25.81	103	80-120	73-127	
Barium		25.00	26.81	107	80-120	73-127	
Beryllium		25.00	25.57	102	80-120	73-127	
Cadmium		25.00	26.52	106	80-120	73-127	
Chromium		25.00	26.86	107	80-120	73-127	
Cobalt		25.00	28.75	115	80-120	73-127	
Copper		25.00	25.84	103	80-120	73-127	
Lead		25.00	26.56	106	80-120	73-127	
Molybdenum		25.00	26.70	107	80-120	73-127	
Nickel		25.00	28.18	113	80-120	73-127	
Selenium		25.00	23.08	92	80-120	73-127	
Silver		12.50	13.10	105	80-120	73-127	
Thallium		25.00	27.95	112	80-120	73-127	
Vanadium		25.00	25.81	103	80-120	73-127	
Zinc		25.00	26.32	105	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-2144 EPA 7471A Total EPA 7471A

05/29/14

Project: Former Pechiney Cast Plate / 0106270030

F	2	ąç	jε)	3 of 4	
 _						

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-268	LCS	Solid	Mercury 04	05/29/14	05/29/14 20:25	140529L06
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.8350	0.9030	108	85-12°	1

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-2144 EPA 3540C EPA 8082

05/29/14

Project: Former Pechiney Cast Plate / 0106270030

Page 4 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number		
099-02-003-258	LCS	Solid	GC 58	05/29/14	05/31/14 10:15	140529L13		
Parameter		Spike Added	Conc. Recovere	ed LCS %R	ec. %Rec	. CL Qualifiers		
Aroclor-1016		100.0	98.11	98	50-13	5		
Aroclor-1260		100.0	96.14	96	60-130)		

Sample Analysis Summary Report

Work Order: 14-05-2144				Page 1 of 1
<u>Method</u>	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6010B	EPA 3050B	469	ICP 7300	1
EPA 7471A	EPA 7471A Total	915	Mercury 04	1
EPA 8015B (M)	EPA 3550B	682	GC 47	1
EPA 8082	EPA 3540C	421	GC 58	1

Glossary of Terms and Qualifiers

Work Order: 14-05-2144 Page 1 of 1

<u>Qualifiers</u>	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- concentration by a factor of four or greater.

 SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Γ	T	1	Province			1									1	T		T	acharchic and a second	emilionation				T						greate	-
3132	OF /				ON)			ADDITIONAL COMMENTS										A CALLES COLOR DE CONTRACTOR D	_{Amb} icama e e en estado e en estado e en estado e en estado e en entre en entre en entre en entre en entre en en								THE TAXABLE PROPERTY OF TAXABLE PR			
00	J L				YES				MS/MSD	-,	-	_				~	_			-					Ø						
	PAGE								Cooled	×	×	X	×	×	×	X	×	ヹ	AND												J
-	I STR	.0.)		NO.		five Type											AND THE PROPERTY AND TH												474
	DATE: 5 - 27 - BEDORTING REDIIIREMENTS	COINCINICA			EQUIRED	SITE SPECIFIC GLOBAL ID NO		Water (W), , or Other (O)	Soil (S), V Vapor (V) Filtered	S	0	S	S	S	S	S	0	S												te 200 3094	Fax 949.642.4474
L.	DATE: 5	JA I ING KE	- International	t oat permite enterprise parte of the control of th	GEOTRACKER REQUIRED	SPECIFIC (ER SIZE	jar	>								WHITE PROTOCOLOUPING		The contract of the contract o				SS:					121 Innovation Drive, Suite 200 Irvine, California 92617-3094	ax 949
-	DA	Ž			GEO	SITE			CONTAINER TYPE AND SIZE	glass	-							->	CONTRACTOR						ONTAINER	ö					
		•	Address of the Control of the Contro						CO	J 020 H									AND TENEDOCIONAL CONTRACTOR OF THE PROPERTY OF						TOTAL NUMBER OF CONTAINERS:	SAMPLING COMMENTS:				1 Innova	Tel 949.642.0245
The second secon	100 January 100 Ja	AMPC		The state of the s																					AL NUMBI	PLING CO		ne e e e e e e e e e e e e e e e e e e		12.	Tel 949
		1																	000000000000000000000000000000000000000										99		
	CHENT MEOBAATION	FORMALIO																					1		E TIME	(%)	>		1530	200	7
		CLIEN					ALYSES																\perp		DATE	N. N.				ly led	
	Lac	_\		,	7		ANALY																1						1 2 E	大学(
	12/2	LABORATORY NAME: 1 PMCC	ë	1	JAVE NOWA	NUMBER:	A												***************************************						٠ <u>۲</u> :	73	7	1		10,0	72
5	7		Y ADDRES	Y GONTAC	VE	Y PHONE	SV.	2108 5108			×	X X	×	X	×	X	X	×	COMMONTAL DATES						RECEIVED BY:	SKE:	T. AnE	RE: A	No.	RE://	۲
	(45)	ABOKArek	ABORATOR	AROBATOR	0 12	ABORÁTOR		C808	1 <i>0</i> H	×	×	×	×	X	×	X (×	メ	agarestational engineering			7			RECEI	SIGNATURE: PRINTED NAME:	COMPÁN	SIGNATURE:	COMPANY:	SIGNATURE://	COMPANY:
	MINEY	,								700									NAMES OF THE PROPERTY OF THE P						TIME	0034	•	3		0,001	
2	16Chi		2				<u> </u>	30	SAMPLE NUMBER	-SS-				Į	0		Z	~							DATE	Shap	1/1/	Shirt Shirt	11/2	5/24/12 100	Ę.
2		030	onlan	天			MATU	M	SAM	876-111 B-0-SS	41066	41067	8901#	6901#	41070	101	101	#1673	用用						-	7				MIGA	1
roby	25	627.C	9	18	i.e		SIG	Car		218	#	#	#	#	#	#			885				1		 BY:	Maryington		1	3	18-	7
sno	AAME:	R. 010	inda	ME:	7017	<u> </u>	RS	The state of the s	TIME	7h80	Froll	1106	イニ	= 5	8111	1122	1125	9711	12.58	4303					ISHED	35	B	, L		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	7
CHAIN-OF-CUSTODY RECORD	PROJECT NAME: FUYME	PROJECT NUMBER: 010627003	RESULTS TO: [TURNAROUND TIME:	NOT NOT OF ON	ž 2	MP	Hunderly Chaminski	DATE	6-29-14								~	appengasarefappipadapintos.						RELINQUISHED BY:	SIGNATURE:	MPANY	SIGNATURE:	COMPANY:	SIGNATURE: PRINTED NAME	COMPANY:
j	PRC	PROJ	RESU	TURN	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	<u> </u>	SAS	12	۵	5.		~		~		F+	<u> </u>	2					<u></u>	<u> </u>	/R		Ö	SIG	ğ Ö	SIG	<u> </u>

Return to Contents

gvironmental aboratories, inc.

MPLE RECEIPT FORM

CLIENT: AMEC	DATE: _	05/29/	14_						
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not froze	n except se	ediment/tissue	2)						
	Blank	☐ Sample							
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)									
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling.									
		9.							
☐ Received at ambient temperature, placed on ice for transport by Co	Juliel.	Checked by	h76						
Ambient Temperature: □ Air □ Filter		Checked by	y •						
CUSTODY SEALS INTACT:			S. A. S.						
□ Cooler □ □ No (Not Intact) ☑ Not Present	□ N/A	Checked by	1: 670						
☐ Sample ☐ ☐ No (Not Intact) ☑ Not Present		Checked by	1:86L						
SAMPLE CONDITION:	Yes	No	N/A						
Chain-Of-Custody (COC) document(s) received with samples									
COC document(s) received complete	1								
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels									
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.									
Sampler's name indicated on COC	. Ø								
Sample container label(s) consistent with COC	1								
Sample container(s) intact and good condition									
Proper containers and sufficient volume for analyses requested	. Ø								
Analyses received within holding time	. z								
Aqueous samples received within 15-minute holding time									
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfides ☐ Dissolved Oxygen	🗆		Ø						
Proper preservation noted on COC or sample container	🗆		Ø						
☐ Unpreserved vials received for Volatiles analysis									
Volatile analysis container(s) free of headspace	П		ď						
Tedlar bag(s) free of condensation CONTAINER TYPE:			Ø						
Solid: 🗹 4ozCGJ 🗆 8ozCGJ 🗆 16ozCGJ 🗆 Sleeve () 🗆 EnCore	es [®] □Terra	a $Cores^{\scriptscriptstyle{f @}} \; \square_{_}$							
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBβ	o □1AGB	□1AGB na ₂ [∃1AGB s						
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGB	s □1PB	□1PBna □	1500PB						
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na ₂ □_			77						
Air: Teclar® Canister Other: Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: E Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ +N	Labeled	d/Checked by: Reviewed by:	-630						

Supplemental Report 1

Additional requested analyses are reported as a stand-alone report.

CALSCIENCE

WORK ORDER NUMBER: 14-05-2144

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate / 0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

ResultLink >

Email your PM >

Approved for release on 06/06/2014 by: Stephen Nowak

Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Former Pechiney Cast Plate / 0106270030

Work Order Number: 14-05-2144

1	Work Order Narrative	3
2	Sample Summary	4
3	Client Sample Data	5 5 6
4	Quality Control Sample Data.4.1 MS/MSD.4.2 LCS/LCSD.	7 7 9
5	Sample Analysis Summary	11
6	Glossary of Terms and Qualifiers	12
7	Chain of Custody/Sample Receipt Form	13

Work Order Narrative

Work Order: 14-05-2144 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 05/29/14. They were assigned to Work Order 14-05-2144.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order:

14-05-2144

Project Name: Former Pechiney Cast Plate / 0106270030

PO Number:

Date/Time

05/29/14 18:00

Received:

Number of Containers:

9

Attn: Linda Conlan

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
#1067	14-05-2144-3	05/29/14 11:06	1	Solid
#1068	14-05-2144-4	05/29/14 11:12	1	Solid
#1069	14-05-2144-5	05/29/14 11:15	1	Solid
#1070	14-05-2144-6	05/29/14 11:18	1	Solid
#1071	14-05-2144-7	05/29/14 11:22	1	Solid
#1072	14-05-2144-8	05/29/14 11:25	1	Solid
#1073	14-05-2144-9	05/29/14 11:26	1	Solid

05/29/14

14-05-2144

Project: Former Pechiney Cast Plate / 0106270030

Analytical Report

AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation:

Preparation: T22.11.5. All Method: EPA 6010B Units: mg/L

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1067	14-05-2144-3-A	05/29/14 11:06	Solid	ICP 7300	06/03/14	06/05/14 18:03	140605LA1
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Lead		8.97	0	0.100	1.00		
#1068	14-05-2144-4-A	05/29/14 11:12	Solid	ICP 7300	06/03/14	06/05/14 18:04	140605LA1
<u>Parameter</u>		Result	E	<u>RL</u>	DF	Qua	alifiers
Lead		3.24	0	0.100	1.00		
#1069	14-05-2144-5-A	05/29/14 11:15	Solid	ICP 7300	06/03/14	06/05/14 18:10	140605LA1
Parameter		Result	<u>F</u>	<u>RL</u>	DF	Qua	alifiers
Lead		62.4	0	0.100	1.00		
#4072	44 OF 2444 9 A	05/20/44	Calld	ICD 7300	06/02/44	06/05/44	14060EL A4

#1072	14-05-2144-8-A	05/29/14 11:25	Solid	ICP 7300	06/03/14	06/05/14 18:12	140605LA1
<u>Parameter</u>		Result	RL		<u>DF</u>	Qualif	fiers
Lead		ND	0.1	00	1.00		

Method Blank	097-05-006-7287	N/A	Aqueous ICP 7300	06/03/14	06/05/14 140605LA1 17:49
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Lead		ND	0.100	1.00	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

05/29/14

EPA 1311

<u>Parameter</u>

Lead

Analytical Report

AMEC Environment & Infrastructure Date Received: 121 Innovation Drive, Suite 200 Work Order: 14-05-2144 Irvine, CA 92617-3094 Preparation: Method:

EPA 6010B Units: mg/L

<u>DF</u>

1.00

Qualifiers

Method Blank	099-14-021-1218	N/A	Aqueous	ICP 7300	06/03/14	06/04/14 15:28	140604LA1
Lead		2.81	0	.100	1.00		
<u>Parameter</u>		Result	_	<u>L</u>	<u>DF</u>	Qua	<u>alifiers</u>
# 1073	14-05-2144-9-A	05/29/14 11:26	Solid	ICP 7300	06/03/14	06/04/14 15:59	140604LA1
Lead		9.72	0	.100	1.00		
<u>Parameter</u>		Result	_	<u>:L</u>	<u>DF</u>	Qua	<u>alifiers</u>
#1071	14-05-2144-7-A	05/29/14 11:22	Solid	ICP 7300	06/03/14	06/04/14 15:57	140604LA1
Lead		6.55	0	.100	1.00		
<u>Parameter</u>		Result	<u> </u>	<u>L</u>	<u>DF</u>	Qua	<u>alifiers</u>
#1070	14-05-2144-6-A	05/29/14 11:18	Solid	ICP 7300	06/03/14	06/04/14 15:55	140604LA1
Lead		0.944	0	.100	1.00		
Parameter Parameter		Result	E	<u>.</u>	<u>DF</u>	Qua	alifiers
#1067	14-05-2144-3-A	05/29/14 11:06	Solid	ICP 7300	06/03/14	06/04/14 15:49	140604LA1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Project: Former Pechiney	Cast Plate / 0106270030					Pa	ige 1 of 1
			Offits.				mg/

Result

ND

<u>RL</u>

0.100

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure Date Received: 05/29/14 121 Innovation Drive, Suite 200 Work Order: 14-05-2144 T22.11.5. AII Irvine, CA 92617-3094 Preparation: Method: **EPA 6010B** Page 1 of 2

Project: Former Pechiney Cast Plate / 0106270030

Quality Control Sample ID	Туре		Matrix	Ins	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
14-06-0282-1	Sample		Aqueou	s ICI	P 7300	06/05/14	06/05/14	17:53	140605SA1	
14-06-0282-1	Matrix Spike		Aqueou	s ICI	P 7300	06/05/14	06/05/14	17:55	140605SA1	
14-06-0282-1	Matrix Spike	Duplicate	Aqueou	s ICI	P 7300	06/05/14	06/05/14	17:56	140605SA1	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Lead	ND	5.000	5.410	108	5.467	109	75-125	1	0-20	

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate / 0106270030

Date Received: Work Order: Preparation: Method:

14-05-2144 EPA 1311

05/29/14

d: EPA 6010B Page 2 of 2

Quality Control Sample ID	Туре		Matrix	Instru	ıment	Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number
#1067	Sample		Solid	ICP 7	7300	06/03/14	06/04/14	15:49	140604SA1	
#1067	Matrix Spike		Solid	ICP 7	7300	06/03/14	06/04/14	15:50	140604SA1	
#1067	Matrix Spike Du	ıplicate	Solid	ICP 7	7300	06/03/14	06/04/14	15:52	140604SA1	
Parameter	Sample S Conc. A	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Lead	0.9435 5	5.000	6.490	111	5.605	93	84-120	15	0-7	4

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-05-2144 T22.11.5. AII EPA 6010B

05/29/14

Project: Former Pechiney Cast Plate / 0106270030

Page 1 of 2

Quality Control Sample ID	Type	Matrix	Instrument I	Date Prepared	Date Analyzed	LCS Batch Number
097-05-006-7287	LCS	Aqueous	ICP 7300	06/03/14	06/05/14 17:51	140605LA1
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Lead		5.000	5.622	112	80-120	0

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate / 0106270030

Date Received: Work Order: Preparation: Method: 05/29/14 14-05-2144 EPA 1311 EPA 6010B

Page 2 of 2

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-021-1218	LCS	Aqueous	ICP 7300	06/03/14	06/04/14 15:30	140604LA1
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %R	ec. %Rec	. CL Qualifiers
Lead		5.000	5.330	107	80-120	0

Sample Analysis Summary Report

Work Order: 14-05-2144		Page 1 of 1		
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6010B	EPA 1311	469	ICP 7300	1
EPA 6010B	T22.11.5. AII	469	ICP 7300	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 14-05-2144 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- Χ % Recovery and/or RPD out-of-range.
- Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

o Contents

Stephen Nowak

From: Holland, Kim [Kim.Holland@amec.com]
Sent: Tuesday, June 03, 2014 11:15 AM

To: Stephen Nowak

Subject: RE: Former Pechiney Cast Plate / 0106270030 / CEL 14-05-2144

Steve,

Please run STLC Pb on the following samples: #1067, #1068, #1069, and #1072 Please run TCLP Pb on the following samples: #1067, #1070, #1071, and #1073

From: Stephen Nowak [StephenNowak@eurofinsUS.com]

Sent: Monday, June 02, 2014 5:26 PM

To: Costamagna, Daniel G; Holland, Kim; Conlan, Linda; Huang, Stephen; Lee, Zhur

Subject: Former Pechiney Cast Plate / 0106270030 / CEL 14-05-2144

Report, EDD, and Invoice are attached.

Stephen Nowak Project Manager

Calscience 7440 Lincoln Way GARDEN GROVE, CA 92841 USA

Phone: +1 714 895 5494 Mobile: +1 714 904 5230

Email: StephenNowak@EurofinsUS.com

Website: www.calscience.com

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon this information by persons or entities other than the intended recipient is prohibited. If you receive this in error, please contact the sender and delete the material from any computer. Email transmission cannot be guaranteed to be secure or error free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete. The sender therefore is in no way liable for any errors or omissions in the content of this message which may arrise as a result of email transmission. If verification is required, please request a hard copy. We take reasonable precautions to ensure our emails are free from viruses. You need, however, to verify that this email and any attachments are free of viruses, as we can take no responsibility for any computer viruses, which might be transferred by way of this email. We may monitor all email communication through our networks. If you contact us by email, we may store your name and address to facilitate communication.

The information contained in this e-mail is intended only for the individual or entity to whom it is addressed. Its contents (including any attachments) may contain confidential and/or privileged information. If you are not an intended recipient you must not use, disclose, disseminate, copy or print its contents. If you receive this e-mail in error, please notify the sender by reply e-mail and delete and destroy the message.

Click here to report this email as spam.

NB 31345	7	77.5		YES NO			COOMENTS COMMENTS	~,	<i>\'</i> :	× :	×	×		* X	~ ×	×		equipments and distributions of the control of the							ge 14		Same
MATTER E CONTRACT	G REQUIREME!			GEOTRACKER REGUIRED	SITE SPECIFIC GLOBAL ID NO.	Water (W), , or Other (O)	CONTAINER (3,5/2) TYPE AND SIZE (6,6/2) FILE (6,6/2)	glass jar	0	S	S	S	S	S	0	\$ \$	merchanninaninininininininininininininininin		A STATE OF THE PROPERTY OF THE		The state of the s	CONTAINERS:					121 Innovation Drive, Suite 200 Irvine, California 92617-3094 49.642.0245 Fax 949.642.4474
10-13/	CLIENT INFORMATION: AN E.C.				ES)) 	20/1									THE REPORT OF THE PROPERTY OF					DATE TIME TOTAL NUMBER OF CONTAINERS:	SAMPLING COMMENTS:		5/24/w 1530		121 Innovation
7-10	LABORATORY NAME, 10 MCP GI	LABORATORY ADDRESS:	LABGRAGORY GONTACA (211/2)	LABORÁTORY PHONE NUMBER:	ANALYSE	25108 2108 21 C808	70H	*	× ×		× × ×	XXX	XXX	XXX	X .	×××	gar consensed interiorismos descriptional description of consensations descriptions of consensations of cons						PRINTED NAME: HE COMPANY:	SIGNATURE: C. I. M. M.	PRINTED NAME: DY THE COMPANY:	SIGNATURE:	PRINTED NAME: 3 ST
CORD	TOVANO TOCKINAN	c Conlan	48 HK	•	(SIGNATIBE):	Vanuski.	SAMPLE	- 876-111 B-0-SS-002	#1066		# 1068	41069	0101#	1/01#	<u> </u>		SS F F			Total Control		BY: DATE TIME	harmade 5/4/1400		55 M		AUDY HIOR 5/29/14 1800
CHAIN-OF-CUS	PROJECT NAME: PVW/CA	RESULTS TO: LINDA	TURNAROUND TIME: SAMPLE SHIPMENT METHOD	Pap courier	CAMOLEDS	Himberlyk	DATE TIME	5-29-14 0842		3011 1106	1112	s 1115	8/11/			1126	1/mc) 1758				- Control of the Cont	RELINQUISHED BY:	PRINTED NAME TO	SIGNATURE:	PRINTED NAME:	SIGNATURE	ME

eturn to Contents

Calscience
Environmental
Laboratories, inc.

WORK ORDER #: 14-05- 2 1 4 4

SAMPLE RECEIPT FORM Cooler ___ of ___

CLIENT: AMEC	DATE:	05/29/	14
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozer Temperature 2 • 2 °C - 0.3 °C (CF) = 1 • 9 °C Sample(s) outside temperature criteria (PM/APM contacted by:)		ediment/tissue	
☐ Sample(s) outside temperature criteria but received on ice/chilled on same do	ay of sampl	ling.	
☐ Received at ambient temperature, placed on ice for transport by Co			
Ambient Temperature: □ Air □ Filter		Checked by	y: <u>676</u>
CUSTODY SEALS INTACT: □ Cooler □ □ No (Not Intact) □ Not Present □ Sample □ No (Not Intact) ✓ Not Present	□ N/A	Checked by	<i>-</i> 3 -
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	. p		
COC document(s) received complete	. ≠		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sampler's name indicated on COC	1		
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition	•	Ц	
Proper containers and sufficient volume for analyses requested			
Analyses received within holding time	Z		
Aqueous samples received within 15-minute holding time			-
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfides ☐ Dissolved Oxygen			Ø
Proper preservation noted on COC or sample container			K
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace			<u>.</u>
Tedlar bag(s) free of condensation CONTAINER TYPE:			JEJ
Solid: ☐4ozCGJ ☐8ozCGJ ☐16ozCGJ ☐Sleeve () ☐EnCore	s® □Terra	aCores [®] □_	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp			
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs	□1PB	□1PBna □	1500PB
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na ₂ □			7-
Air: Teclar Canister Other: Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Er Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ +Na	rvelope	Reviewed by:	-600

Calscience

Supplemental Report 2

Additional requested analyses are reported as a stand-alone report.

WORK ORDER NUMBER: 14-05-2144

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate / 0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

ResultLink >

Email your PM >

Approved for release on 06/12/2014 by:

Stephen Nowak Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Former Pechiney Cast Plate / 010

Work Order Number: 14-05-2144

1	Work Order Narrative	3
2	Sample Summary	4
3	Client Sample Data	5 5
4	Quality Control Sample Data	6 7
5	Sample Analysis Summary	8
6	Glossary of Terms and Qualifiers	9
7	Chain-of-Custody/Sample Receipt Form	10

Work Order Narrative

Work Order: 14-05-2144 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 05/29/14. They were assigned to Work Order 14-05-2144.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order:

14-05-2144 Former Pechiney Cast Plate / 0106270030

Project Name: PO Number:

Date/Time Received:

te/Time 05/29/14 18:00

Number of 9 Containers:

Attn: Linda Conlan

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
#1069	14-05-2144-5	05/29/14 11:15	1	Solid

Analytical Report

AMEC Environment & Infrastructure	Date Received:	05/29/14
121 Innovation Drive, Suite 200	Work Order:	14-05-2144
Irvine, CA 92617-3094	Preparation:	EPA 1311
	Method:	EPA 6010B
	Units:	mg/L
Project: Former Pechiney Cast Plate / 0106270030		Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1069	14-05-2144-5-A	05/29/14 11:15	Solid	ICP 7300	06/09/14	06/10/14 15:44	140610LA1
<u>Parameter</u>		Result	<u>R</u>	<u></u>	<u>DF</u>	Qual	<u>ifiers</u>
Lead		0.804	0.	100	1.00		

Method Blank	099-14-021-1221	N/A	Aqueous ICP 7300	06/09/14	06/10/14 15:27	140610LA1
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
Lead		ND	0.100	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure

Date Received:

Work Order:

14-05-2144

Irvine, CA 92617-3094

Preparation:

Method:

Date Received:

05/29/14

Preparation:

EPA 1311

Method:

Project: Former Pechiney Cast Plate / 0106270030 Page 1 of 1

Quality Control Sample ID	Type		Matrix	Instru	ument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
14-06-0594-1	Sample		Solid	ICP 7	7300	06/09/14	06/10/14	15:30	140610SA1	
14-06-0594-1	Matrix Spike		Solid	ICP 7	7300	06/09/14	06/10/14	15:32	140610SA1	
14-06-0594-1	Matrix Spike	Duplicate	Solid	ICP 7	7300	06/09/14	06/10/14	15:33	140610SA1	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Lead	ND	5.000	5.274	105	4.750	95	84-120	10	0-7	4

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 05/29/14 14-05-2144 EPA 1311

EPA 6010B

Page 1 of 1

Project: Former Pechiney Cast Plate / 0106270030

Quality Control Sample ID	Туре	Matrix	Instrument [Date Prepared	Date Analyzed	LCS Batch Number
099-14-021-1221	LCS	Aqueous	ICP 7300	06/09/14	06/10/14 15:28	140610LA1
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Lead		5.000	5.382	108	80-120)

RPD: Relative Percent Difference. CL: Control Limits

Sample Analysis Summary Report

Work Order: 14-05-2144				Page 1 of 1
Method	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location
EPA 6010B	EPA 1311	469	ICP 7300	1

Glossary of Terms and Qualifiers

Work Order: 14-05-2144 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- concentration by a factor of four or greater.

 SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Contents

Stephen Nowak

From: Holland, Kim [Kim.Holland@amec.com]
Sent: Monday, June 09, 2014 9:38 AM

To: Stephen Nowak

Subject: RE: Former Pechiney Cast Plate / 0106270030 / CEL 14-05-2144

Please add lead TCLP to sample #1069 on rush TAT.

Thanks.

Kim

From: Stephen Nowak [StephenNowak@eurofinsUS.com]

Sent: Friday, June 06, 2014 2:21 PM

To: Costamagna, Daniel G; Holland, Kim; Conlan, Linda; Huang, Stephen; Lee, Zhur

Subject: Former Pechiney Cast Plate / 0106270030 / CEL 14-05-2144

Report, EDD, and Invoice are attached.

Stephen Nowak Project Manager

Eurofins Calscience, Inc. 7440 Lincoln Way GARDEN GROVE, CA 92841 USA

Phone: +1 714 895 5494 Mobile: +1 714 904 5230

Email: StephenNowak@EurofinsUS.com

Website: www.calscience.com

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon this information by persons or entities other than the intended recipient is prohibited. If you receive this in error, please contact the sender and delete the material from any computer. Email transmission cannot be guaranteed to be secure or error free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete. The sender therefore is in no way liable for any errors or omissions in the content of this message which may arise as a result of email transmission. If verification is required, please request a hard copy. We take reasonable precautions to ensure our emails are free from viruses. You need, however, to verify that this email and any attachments are free of viruses, as we can take no responsibility for any computer viruses, which might be transferred by way of this email. We may monitor all email communication through our networks. If you contact us by email, we may store your name and address to facilitate communication.

The information contained in this e-mail is intended only for the individual or entity to whom it is addressed. Its contents (including any attachments) may contain confidential and/or privileged information. If you are not an intended recipient you must not use, disclose, disseminate, copy or print its contents. If you receive this e-mail in error, please notify the sender by reply e-mail and delete and destroy the message.

Click here to report this email as spam.

Contents

Stephen Nowak

From: Holland, Kim [Kim.Holland@amec.com]
Sent: Tuesday, June 03, 2014 11:15 AM

To: Stephen Nowak

Subject: RE: Former Pechiney Cast Plate / 0106270030 / CEL 14-05-2144

Steve,

Please run STLC Pb on the following samples: #1067, #1068, #1069, and #1072 Please run TCLP Pb on the following samples: #1067, #1070, #1071, and #1073

From: Stephen Nowak [StephenNowak@eurofinsUS.com]

Sent: Monday, June 02, 2014 5:26 PM

To: Costamagna, Daniel G; Holland, Kim; Conlan, Linda; Huang, Stephen; Lee, Zhur

Subject: Former Pechiney Cast Plate / 0106270030 / CEL 14-05-2144

Report, EDD, and Invoice are attached.

Stephen Nowak Project Manager

Calscience 7440 Lincoln Way GARDEN GROVE, CA 92841 USA

Phone: +1 714 895 5494 Mobile: +1 714 904 5230

Email: <u>StephenNowak@EurofinsUS.com</u>

Website: www.calscience.com

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon this information by persons or entities other than the intended recipient is prohibited. If you receive this in error, please contact the sender and delete the material from any computer. Email transmission cannot be guaranteed to be secure or error free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete. The sender therefore is in no way liable for any errors or omissions in the content of this message which may arrise as a result of email transmission. If verification is required, please request a hard copy. We take reasonable precautions to ensure our emails are free from viruses. You need, however, to verify that this email and any attachments are free of viruses, as we can take no responsibility for any computer viruses, which might be transferred by way of this email. We may monitor all email communication through our networks. If you contact us by email, we may store your name and address to facilitate communication.

The information contained in this e-mail is intended only for the individual or entity to whom it is addressed. Its contents (including any attachments) may contain confidential and/or privileged information. If you are not an intended recipient you must not use, disclose, disseminate, copy or print its contents. If you receive this e-mail in error, please notify the sender by reply e-mail and delete and destroy the message.

Click here to report this email as spam.

CHAIN-OF-CUSTODY RECORD	4	Cact Data LAG	\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DATE: 5-20-14	NB 31345 PAGE OF /	
		250 A2	CLIENT IMFORMATION: AM EC	G REQUIREME	7	
RESULTS TO: LIMA COV	onlan	LABORATORY ADDRESS:				
48 1	8					
SAMPLE SHIPMENT METHOD:		See Ver Nowak		GEOTRACKER REQUIRED	YES (NO	
		LABORATORY PHONE NUMBER:		SITE SPECIFIC GLOBAL ID NO.		
SAMPLERS, (SIGN/	ATURE):	ANALYSE	ES			
hinderly Haminski	4	27W CT 5108 0 C801		/ater (W), or Other (O)	stənistr	
DATE TIME	SAMPLE NUMBER	70H	OO A	CONTAINER SOII (8), Waspor (V), Filtered Soii (8), Waspor (V), Was	Cooled MS/MSD COMMENTS	
11-71-11 Suz 11-11-11	400-85-007	×	707	alass jar 15	- 1 * -	
Foll	#1066	×××	1	7	<u></u>	
7 1106 #1067	190	XXX		S		3,12
8901# 2111	890	×××		S	×	
<u> </u>	41069	X X X		S	×	
1118 # 107	070	×××		S		
	110	×××		5	~ ×	
1125	072	X		0	X	
0 1 1126 #10.	673	×××		\$ \$	×	
Mr)	The second secon			MY EXECUTION OF THE PROPERTY O		
- 120 - 120					Construction of Construction Co	
				eli destruire de la companya de la c		
	A CONTRACTOR OF THE PROPERTY O					
September 1997	Company of the control of the contro					
The second secon				CONTRACTOR		
RELINQUISHED BY:	DATE TIME	RECEIVED BY:	DATE TIME TOTAL NUMBER OF CONTAINERS:	ONTAINERS:		
SIGNATURE: LIN COMMINATOR	12		SAMPLING COMMENTS:	Ś.	5	
PRINTED NAME TO DOMING	The R	PRINTED NAME:				
SIGNATURE:		SIGNATURE: 1 M 1/1				Pa
PRINTED NAME:	See 197	PRINTED NAME: DATE COMPANY:	5/29/4 1530			ige 12
The state of the s		1001			*43500**	Oï
AME: RUDY H	10A 5/29/14 100	1 1	121 Innovation 129 1800 Irvine, Califor	121 Innovation Drive, Suite 200 Irvine, California 92617-3094 49 642 0245 Fax 949 642 4474	Smec	13
COMPANY:		COMPANY: (CC)::- >:>:	j		
			Return to Contents			

rn to Contents

WORK ORDER #: 14-05- 2 1 4 4

SAMPLE RECEIPT FORM

Cooler	of	
--------	----	--

CLIENT: DATE:	05/29/	<u> 14 </u>
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozen except second remperature 2 • 2 °C - 0.3 °C (CF) = 1 °C DEJank Sample(s) outside temperature criteria (PM/APM contacted by:)	diment/tissue) □ Sample	
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampli	na.	
	119.	
☐ Received at ambient temperature, placed on ice for transport by Courier.	Checked by:	h76
Ambient Temperature: Air Filter	Checked by.	
CUSTODY SEALS INTACT: Cooler	Checked by: Checked by:	
SAMPLE CONDITION: Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples		
COC document(s) received complete		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.		
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.		
Sampler's name indicated on COC		
Sample container label(s) consistent with COC		
Sample container(s) intact and good condition		
Proper containers and sufficient volume for analyses requested 💆		
Analyses received within holding time 🗹		
Aqueous samples received within 15-minute holding time		
□ pH □ Residual Chlorine □ Dissolved Sulfides □ Dissolved Oxygen □		Ą
Proper preservation noted on COC or sample container		Ø
☐ Unpreserved vials received for Volatiles analysis		
Volatile analysis container(s) free of headspace		
Tedlar bag(s) free of condensation		
Solid: 🗹 4ozCGJ 🗆 8ozCGJ 🗆 16ozCGJ 🗆 Sleeve () 🗆 EnCores® 🗀 Terra	Cores® □	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB [\Box 1AGBna ₂ \Box	1AGB s
□500AGE □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB	□1PB na □5	500PB
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na₂ □ □		7
Air: □Teclar [®] □Canister Other: □ Trip Blank Lot#: Labeled	/Checked by: _. Reviewed by: _	100

Calscience

Supplemental Report 3

Additional requested analyses have been added to the original report.

WORK ORDER NUMBER: 14-05-2144

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate / 0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

Mich Ru Son

Approved for release on 06/24/2014 by: Stephen Nowak

Project Manager

Email your PM >

ResultLink >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	Former Pechiney Cast Plate / 0106270030
----------------------	---

Work Order Number: 14-05-2144

1	Work Order Narrative	3
2	Sample Summary	4
3	Client Sample Data	5 5
4	Quality Control Sample Data.4.1 MS/MSD.4.2 LCS/LCSD.	6
5	Sample Analysis Summary	8
6	Glossary of Terms and Qualifiers	9
7	Chain-of-Custody/Sample Receipt Form	10

Work Order Narrative

Work Order: 14-05-2144 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 05/29/14. They were assigned to Work Order 14-05-2144.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: Project Name:

14-05-2144 Former Pechiney Cast Plate / 0106270030

PO Number:

Date/Time

05/29/14 18:00

Received:

Number of 9

Containers:

Linda Conlan Attn:

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
876-IIIB-O-SS-002	14-05-2144-1	05/29/14 08:42	1	Solid
#1070	14-05-2144-6	05/29/14 11:18	1	Solid

Mercury

Analytical Report

AMEC Environment & Infrastructure	Date Received:	05/29/14
121 Innovation Drive, Suite 200	Work Order:	14-05-2144
Irvine, CA 92617-3094	Preparation:	EPA 1311
	Method:	EPA 7470A
	Units:	mg/L

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Project: Former Pechiney Cast Plate / 0106270030						Pa	nge 1 of 1

#1070	14-05-2144-0-A	11:18	Solid Mercury 04	00/03/14	19:08	140023L02/
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND	0.00500	1.00		

Method Blank	099-04-005-779	N/A	Aqueous I	Mercury 04	06/03/14	06/23/14 18:17	140623L02A
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>

0.00500

1.00

ND

DF: Dilution Factor. RL: Reporting Limit. MDL: Method Detection Limit.

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure

Date Received:

Work Order:

14-05-2144

Irvine, CA 92617-3094

Preparation:

Method:

Date Received:

05/29/14

Preparation:

EPA 1311

Method:

Project: Former Pechiney Cast Plate / 0106270030 Page 1 of 1

Quality Control Sample ID	Type		Matrix	Instr	ument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
14-06-1450-1	Sample		Solid	Merc	cury 04	06/19/14	06/23/14	18:21	140323S02	
14-06-1450-1	Matrix Spike		Solid	Merc	cury 04	06/19/14	06/23/14	18:28	140323S02	
14-06-1450-1	Matrix Spike I	Duplicate	Solid	Merc	cury 04	06/19/14	06/23/14	18:30	140323S02	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.05000	0.04621	92	0.04458	89	71-134	4	0-14	

Quality Control - LCS

AMEC Environment & Infrastructure Date Received: 05/29/14
121 Innovation Drive, Suite 200 Work Order: 14-05-2144
Irvine, CA 92617-3094 Preparation: EPA 1311
Method: EPA 7470A

Project: Former Pechiney Cast Plate / 0106270030 Page 1 of 1

Quality Control Sample ID	Type	Matrix	Instrument I	Date Prepared	Date Analyzed	LCS Batch Number
099-04-005-779	LCS	Aqueous	Mercury 04	06/03/14	06/23/14 18:19	140623L02A
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.05000	0.05298	106	90-122	2

Sample Analysis Summary Report

Work Order: 14-05-2144				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 7470A	EPA 1311	776	Mercury 04	1

Glossary of Terms and Qualifiers

Work Order: 14-05-2144 Page 1 of 1

<u>Qualifiers</u>	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- concentration by a factor of four or greater.

 SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

to Contents

Stephen Nowak

From: Holland, Kim [Kim.Holland@amec.com]

Sent: Friday, June 20, 2014 9:37 AM

To: Stephen Nowak

Subject: RE: Former Pechiney Cast Plate / 0106270030 / CEL 14-05-2144

Hi, Steve:

Please add TCLP for barium, chromium, and mercury for sample #1070.

Please add TCLP for chromium for sample #1071.

Quickest turnaround possible please. Thanks,

Kim

From: Stephen Nowak [mailto:StephenNowak@eurofinsUS.com]

Sent: Monday, June 02, 2014 5:27 PM

To: Costamagna, Daniel G; Holland, Kim; Conlan, Linda; Huang, Stephen; Lee, Zhur

Subject: Former Pechiney Cast Plate / 0106270030 / CEL 14-05-2144

Report, EDD, and Invoice are attached.

Stephen Nowak Project Manager

Calscience 7440 Lincoln Way GARDEN GROVE, CA 92841 USA

Phone: +1 714 895 5494 Mobile: +1 714 904 5230

Email: StephenNowak@EurofinsUS.com

Website: www.calscience.com

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon this information by persons or entities other than the intended recipient is prohibited. If you receive this in error, please contact the sender and delete the material from any computer. Email transmission cannot be guaranteed to be secure or error free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete. The sender therefore is in no way liable for any errors or omissions in the content of this message which may arrise as a result of email transmission. If verification is required, please request a hard copy. We take reasonable precautions to ensure our emails are free from viruses. You need, however, to verify that this email and any attachments are free of viruses, as we can take no responsibility for any computer viruses, which might be transferred by way of this email. We may monitor all email communication through our networks. If you contact us by email, we may store your name and address to facilitate communication.

The information contained in this e-mail is intended only for the individual or entity to whom it is addressed. Its contents (including any attachments) may contain confidential and/or privileged information. If you are not an intended recipient you must not use, disclose, disseminate, copy or print its contents. If you receive this e-mail in error, please notify the sender by reply e-mail and delete and destroy the message.

to Contents

Stephen Nowak

From: Holland, Kim [Kim.Holland@amec.com]
Sent: Monday, June 09, 2014 9:38 AM

To: Stephen Nowak

Subject: RE: Former Pechiney Cast Plate / 0106270030 / CEL 14-05-2144

Please add lead TCLP to sample #1069 on rush TAT.

Thanks.

Kim

From: Stephen Nowak [StephenNowak@eurofinsUS.com]

Sent: Friday, June 06, 2014 2:21 PM

To: Costamagna, Daniel G; Holland, Kim; Conlan, Linda; Huang, Stephen; Lee, Zhur

Subject: Former Pechiney Cast Plate / 0106270030 / CEL 14-05-2144

Report, EDD, and Invoice are attached.

Stephen Nowak Project Manager

Eurofins Calscience, Inc. 7440 Lincoln Way GARDEN GROVE, CA 92841 USA

Phone: +1 714 895 5494 Mobile: +1 714 904 5230

Email: StephenNowak@EurofinsUS.com

Website: www.calscience.com

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon this information by persons or entities other than the intended recipient is prohibited. If you receive this in error, please contact the sender and delete the material from any computer. Email transmission cannot be guaranteed to be secure or error free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete. The sender therefore is in no way liable for any errors or omissions in the content of this message which may arise as a result of email transmission. If verification is required, please request a hard copy. We take reasonable precautions to ensure our emails are free from viruses. You need, however, to verify that this email and any attachments are free of viruses, as we can take no responsibility for any computer viruses, which might be transferred by way of this email. We may monitor all email communication through our networks. If you contact us by email, we may store your name and address to facilitate communication.

The information contained in this e-mail is intended only for the individual or entity to whom it is addressed. Its contents (including any attachments) may contain confidential and/or privileged information. If you are not an intended recipient you must not use, disclose, disseminate, copy or print its contents. If you receive this e-mail in error, please notify the sender by reply e-mail and delete and destroy the message.

Click here to report this email as spam.

o Contents

Stephen Nowak

From: Holland, Kim [Kim.Holland@amec.com]
Sent: Tuesday, June 03, 2014 11:15 AM

To: Stephen Nowak

Subject: RE: Former Pechiney Cast Plate / 0106270030 / CEL 14-05-2144

Steve,

Please run STLC Pb on the following samples: #1067, #1068, #1069, and #1072 Please run TCLP Pb on the following samples: #1067, #1070, #1071, and #1073

From: Stephen Nowak [StephenNowak@eurofinsUS.com]

Sent: Monday, June 02, 2014 5:26 PM

To: Costamagna, Daniel G; Holland, Kim; Conlan, Linda; Huang, Stephen; Lee, Zhur

Subject: Former Pechiney Cast Plate / 0106270030 / CEL 14-05-2144

Report, EDD, and Invoice are attached.

Stephen Nowak Project Manager

Calscience 7440 Lincoln Way GARDEN GROVE, CA 92841 USA

Phone: +1 714 895 5494 Mobile: +1 714 904 5230

Email: <u>StephenNowak@EurofinsUS.com</u>

Website: www.calscience.com

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon this information by persons or entities other than the intended recipient is prohibited. If you receive this in error, please contact the sender and delete the material from any computer. Email transmission cannot be guaranteed to be secure or error free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete. The sender therefore is in no way liable for any errors or omissions in the content of this message which may arrise as a result of email transmission. If verification is required, please request a hard copy. We take reasonable precautions to ensure our emails are free from viruses. You need, however, to verify that this email and any attachments are free of viruses, as we can take no responsibility for any computer viruses, which might be transferred by way of this email. We may monitor all email communication through our networks. If you contact us by email, we may store your name and address to facilitate communication.

The information contained in this e-mail is intended only for the individual or entity to whom it is addressed. Its contents (including any attachments) may contain confidential and/or privileged information. If you are not an intended recipient you must not use, disclose, disseminate, copy or print its contents. If you receive this e-mail in error, please notify the sender by reply e-mail and delete and destroy the message.

Click here to report this email as spam.

CHAIN-OF-CUSTODY RECORD	1		702	
echiney	- Mate Fag		DATE: 5-29-14	PAGE / OF
PROJECT NUMBER: 0106270035	LABORATORY NAME: 10 M CP CLIR	CLIENT IMFORMATION: AM EC	REPORTING REQUIREMENTS:	
RESULTS TO: LINDA CONTAN	LABORATORY ADDRESS:			5-244
TURNAROUND TIME: 48 H.K. SAMPLE SHIPMENT METHOD.	LABERATORY GONTACT / 23, 7 2 / 2			
lab courter	LABORATORY PHONE NUMBER:		GEOTRACKER REQUIRED	YES
	5071:4:44	Y and	SITE SPECIFIC GLOBAL ID NO.	
SAMPLERS, (SIGNATURE):	ANALYSES	2 2	(
nomberlyschmusky	FW 67 5108 0 6808		Vater (W),	siənistr
SAMPLE DATE NUMBER		0 }_	CONTAINER (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	COOMMENTS COMMENTS
5-29-14 0842 876-11-12-55-007	*	20 h	oz alass iar S	<u>→</u>
Holl	×××		>	`. X
3011	XXX		S	X
1112	X X X		S	×
	×××		S	×
# 8/11	XXX		S	
1122 #1071	XXX		5	1 X
1125 #1072	×		0	~ ×
9 1126 #1673	×××		S >	×
NO-1258 885 II		AND THE PROPERTY OF THE PROPER	autolofita attalainin kirjana ayan in	
£08+				
			The state of the s	(
RELINQUISHED BY: DATE TIME	RECEIVED BY:	DATE TIME TOTAL NUMBER OF CONTAINERS:	CONTAINERS:	(d)
M.Christop Ei	SIGNATURE:	SAMPLING COMMENTS:	NTS:	
ST.	COMPANY: 4			
2 1	SIGNATURE:			
PRINTED NAME: 150	PRINTED NAME: D.1 116 A	Shalu 1530		
COMPANY: A F	1000			
SIGNATURE: RALAW W PRINTED NAME: A UDY HIGH 5/29/14 (100)	SIGNATURE: PRINTED NAME: COMPANY:	121 Innovation (124) 1900 121 Innovation (134) 1900 121 121 134	121 Innovation Drive, Suite 200 Irvine, California 92617-3094 49.642.0245 Fax 949.642.4474	ameco
COMPANT:				

Return to Contents

WORK ORDER #: 14-05- 2 1 4

SAMPLE RECEIPT FORM

Cooler ____ of ___

CLIENT: AMEC	DATE: _	05/29/	/ 14
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not from	ozen except se	ediment/tissue	
Temperature 2 • 2 °C - 0.3 °C (CF) = 1 • 9 °C			•
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)			
☐ Sample(s) outside temperature criteria but received on ice/chilled on sam	ie day of sampl	ing.	
☐ Received at ambient temperature, placed on ice for transport by	Courier.		17/
Ambient Temperature: Air Filter		Checked by	y: <u>0 70</u>
CUSTODY SEALS INTACT: Cooler		Checked by	1: <u>676</u> 1: 862
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	Þ		
COC document(s) received complete	1		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample lab			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sampler's name indicated on COC	1		
Sample container label(s) consistent with COC	Ø		
Sample container(s) intact and good condition	Ø		
Proper containers and sufficient volume for analyses requested			
Analyses received within holding time	ø		
Aqueous samples received within 15-minute holding time			
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfides ☐ Dissolved Oxygen	🗆		Ø
Proper preservation noted on COC or sample container			Ø
☐ Unpreserved vials received for Volatiles analysis Volatile analysis container(s) free of headspace	П		Ó
Tedlar bag(s) free of condensation			d
CONTAINER TYPE:			,,
Solid: 74ozCGJ 8ozCGJ 16ozCGJ Sleeve () EnC	ores Terra	aCores ⊔_ -	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AG			
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CG	GBs □1PB	□1PB na □	1500PB
□250PB □250PB n □125PB □125PB znna □100PJ □100PJ na ₂ □			77
Air: Teclar Canister Other: Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAo	E: Envelope	Reviewed by:	- 600

CALSCIENCE

WORK ORDER NUMBER: 14-06-0199

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate / 0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

ResultLink >

Email your PM >

Approved for release on 06/06/2014 by:

Stephen Nowak Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Former Pechiney Cast Plate / 0106270030

Work Order Number: 14-06-0199

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA 8015B (M) C6-C44 (Solid). 4.2 EPA 6010B/7471A CAC Title 22 Metals (Solid). 4.3 EPA 7471A Mercury (Solid). 4.4 EPA 8082 PCB Aroclors (Solid).	9 18 27 29
5	Quality Control Sample Data.5.1 MS/MSD.5.2 LCS/LCSD.	37 37 41
6	Sample Analysis Summary	45
7	Glossary of Terms and Qualifiers	46
8	Chain of Custody/Sample Receipt Form	47

Work Order Narrative

Work Order: 14-06-0199 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 06/03/14. They were assigned to Work Order 14-06-0199.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: Project Name:

14-06-0199 Former Pechiney Cast Plate / 0106270030

PO Number:

Date/Time

06/03/14 18:00

Received:

Number of

13 Containers:

Linda Conlan Attn:

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
886-V-O-CS-001	14-06-0199-1	06/03/14 07:25	1	Concrete
886-V-O-CS-002	14-06-0199-2	06/03/14 07:30	1	Concrete
293-IIIA-P/S-CS-034	14-06-0199-3	06/03/14 07:45	1	Concrete
293-IIIA-P/S-CS-035	14-06-0199-4	06/03/14 07:52	1	Concrete
#1090	14-06-0199-5	06/03/14 09:32	1	Solid
#1091	14-06-0199-6	06/03/14 09:34	1	Solid
#1092	14-06-0199-7	06/03/14 09:36	1	Solid
#1093	14-06-0199-8	06/03/14 09:33	1	Solid
#1094	14-06-0199-9	06/03/14 09:34	1	Solid
#1095	14-06-0199-10	06/03/14 09:35	1	Solid
#1096	14-06-0199-11	06/03/14 09:37	1	Solid
#1097	14-06-0199-12	06/03/14 09:40	1	Solid
#1098	14-06-0199-13	06/03/14 09:39	1	Solid

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0199

Project Name: Former Pechiney Cast Plate / 0106270030

Received: 06/03/14

Attn: Linda Conlan Page 1 of 4

Aroclor-1248 140 50 ug/kg EPA 8082 EPA 3540C 293-IIIA-P/S-CS-035 (14-06-0199-4) Aroclor-1248 140 50 ug/kg EPA 8082 EPA 3540C Aroclor-1260 97 50 ug/kg EPA 8082 EPA 3540C #1090 (14-06-0199-5) Arsenic 2.47 0.750 mg/kg EPA 6010B EPA 3050B Barium 119 0.500 mg/kg EPA 6010B EPA 3050B Beryllium 0.352 0.250 mg/kg EPA 6010B EPA 3050B Chromium 16.1 0.250 mg/kg EPA 6010B EPA 3050B Cobalt 10.2 0.250 mg/kg EPA 6010B EPA 3050B Copper 47.8 0.500 mg/kg EPA 6010B EPA 3050B Lead 12.5 0.500 mg/kg EPA 6010B EPA 3050B Nickel 12.5 0.500 mg/kg EPA 6010B EPA 3050B Vanadium 33.5 0.500 mg/kg EPA 6010B EPA 3050B Zinc 71.2 1.00 mg/kg EPA 6010B EPA 3050B C19-C20 5.5 5.1 mg/kg EPA 6010B EPA 3050B C21-C22 13 5.1 mg/kg EPA 6010B EPA 3050B C22-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C35-C24 5.1 mg/kg EPA 8015B (M) EPA 3550B C35-C2	Client SampleID						
Aroclor-1248	<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
293-IIIA-P/S-CS-035 (14-06-0199-4)	886-V-O-CS-001 (14-06-0199-1)						
Aroclor-1248 Aroclor-1248 Aroclor-1260 Aroclor-1248 Aroclor-1260 Arocl	Aroclor-1248	140		50	ug/kg	EPA 8082	EPA 3540C
Aroclor-1260 97 50 ug/kg EPA 8082 EPA 3540C #1090 (14-06-0199-5) Arsenic 2.47 0.750 mg/kg EPA 6010B EPA 3050B Barlum 119 0.500 mg/kg EPA 6010B EPA 3050B Beryllium 0.352 0.250 mg/kg EPA 6010B EPA 3050B Chromium 16.1 0.250 mg/kg EPA 6010B EPA 3050B Cobalt 10.2 0.250 mg/kg EPA 6010B EPA 3050B Cobalt 10.2 0.250 mg/kg EPA 6010B EPA 3050B Copper 47.8 0.500 mg/kg EPA 6010B EPA 3050B Lead 12.5 0.500 mg/kg EPA 6010B EPA 3050B Nickel 12.5 0.500 mg/kg EPA 6010B EPA 3050B Vanadium 33.5 0.500 mg/kg EPA 6010B EPA 3050B Zinc 71.2 1.00 mg/kg EPA 6010B EPA 3050B C19-C20 5.5 5.1 mg/kg EPA 6010B EPA 3050B C21-C22 13 5.1 mg/kg EPA 6010B EPA 3050B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 25 5.1 mg/kg EPA 8015B (M) EPA 3550B C26-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C26-C26 25 25 5.1 mg/kg EPA 8015B (M) EPA 3550B C26-C27-C22 36 5.1 mg/kg EPA 8015B (M) EPA 3550B C26-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C26-C26 25 5.1 mg/kg EPA 8015B (M) EPA 3550B C26-C28 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C26-C29-C32 36 5.1 mg/kg EPA 8015B (M) EPA 3550B C26-C41 total 330 5.0 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C36-C41 total 330 5.0 mg/kg EPA 8015B (M) EPA 3550B C36-C41 total 330 5.0 mg/kg EPA 8015B (M) EPA 3550B C36-C41 total 330 5.0 mg/kg EPA 8015B (M) EPA 3550B Aroclor-1248 110 50 ug/kg EPA 8082 EPA 3540C Aroclor-1250 137 0.743 mg/kg EPA 6010B EPA 3050B Beryllium 0.290 0.248 mg/kg EPA 6010B EPA 3050B	293-IIIA-P/S-CS-035 (14-06-0199-4)						
#1090 (14-06-0199-5) Arsenic 2.47 0.750 mg/kg EPA 6010B EPA 3050B Barium 119 0.500 mg/kg EPA 6010B EPA 3050B Beryllium 0.352 0.250 mg/kg EPA 6010B EPA 3050B Chromium 16.1 0.250 mg/kg EPA 6010B EPA 3050B Chromium 16.1 0.250 mg/kg EPA 6010B EPA 3050B Cobalt 10.2 0.250 mg/kg EPA 6010B EPA 3050B Copper 47.8 0.500 mg/kg EPA 6010B EPA 3050B Lead 12.5 0.500 mg/kg EPA 6010B EPA 3050B Nickel 12.5 0.500 mg/kg EPA 6010B EPA 3050B Vanadium 33.5 0.250 mg/kg EPA 6010B EPA 3050B C19-C20 5.5 5.1 mg/kg EPA 6010B EPA 3050B C21-C22 13 5.1 mg/kg EPA 6010B EPA 3050B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 25 5.1 mg/kg EPA 8015B (M) EPA 3550B C29-C32 36 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C35-C24 100 50 ug/kg EPA 8015B (M) EPA 3550B C35-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C35-C36	Aroclor-1248	140		50	ug/kg	EPA 8082	EPA 3540C
Arsenic 2.47 0.750 mg/kg EPA 6010B EPA 3050B Barlum 119 0.500 mg/kg EPA 6010B EPA 3050B Berylllum 0.352 0.250 mg/kg EPA 6010B EPA 3050B Chromium 16.1 0.250 mg/kg EPA 6010B EPA 3050B Chromium 16.1 0.250 mg/kg EPA 6010B EPA 3050B Chromium 16.1 0.250 mg/kg EPA 6010B EPA 3050B Cobalt 10.2 0.250 mg/kg EPA 6010B EPA 3050B Cobalt 10.2 0.250 mg/kg EPA 6010B EPA 3050B Copper 47.8 0.500 mg/kg EPA 6010B EPA 3050B EPA 3050B Lead 12.5 0.500 mg/kg EPA 6010B EPA 3050B Lead 12.5 0.500 mg/kg EPA 6010B EPA 3050B Vanadium 33.5 0.250 mg/kg EPA 6010B EPA 3050B Vanadium 33.5 0.250 mg/kg EPA 6010B EPA 3050B EPA 3050B C19-C20 5.5 5.1 mg/kg EPA 6010B EPA 3050B C19-C20 5.5 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 25 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 25 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 25 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 26 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 26 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 26 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 26 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 26 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 26 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 26 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 26 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C26 26 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C26 26 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C26 26 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C26 26 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C26 26 26 5.1 mg/kg EPA 8015B (M) EPA 3550B EPA 3550B C25-C26 26 26 5.1 mg/kg EPA 8015B (M) EPA 3550B EPA	Aroclor-1260	97		50	ug/kg	EPA 8082	EPA 3540C
Barium 119 0.500 mg/kg EPA 6010B EPA 3050B Beryllium 0.352 0.250 mg/kg EPA 6010B EPA 3050B Chromium 16.1 0.250 mg/kg EPA 6010B EPA 3050B Cobalt 10.2 0.250 mg/kg EPA 6010B EPA 3050B Copper 47.8 0.500 mg/kg EPA 6010B EPA 3050B Lead 12.5 0.500 mg/kg EPA 6010B EPA 3050B Nickel 12.5 0.250 mg/kg EPA 6010B EPA 3050B Vanadium 33.5 0.250 mg/kg EPA 6010B EPA 3050B Zinc 71.2 1.00 mg/kg EPA 6010B EPA 3050B C19-C20 5.5 5.1 mg/kg EPA 6010B EPA 3050B C21-C22 13 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C29-C32 36	#1090 (14-06-0199-5)						
Beryllium 0.352 0.250 mg/kg EPA 6010B EPA 3050B Chromium 16.1 0.250 mg/kg EPA 6010B EPA 3050B Cobalt 10.2 0.250 mg/kg EPA 6010B EPA 3050B Copper 47.8 0.500 mg/kg EPA 6010B EPA 3050B Lead 12.5 0.500 mg/kg EPA 6010B EPA 3050B Nickel 12.5 0.250 mg/kg EPA 6010B EPA 3050B Vanadium 33.5 0.250 mg/kg EPA 6010B EPA 3050B Zinc 71.2 1.00 mg/kg EPA 6010B EPA 3050B C19-C20 6.5 5.1 mg/kg EPA 6010B EPA 3050B C21-C22 13 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 25 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26	Arsenic	2.47		0.750	mg/kg	EPA 6010B	EPA 3050B
Chromium 16.1 0.250 mg/kg EPA 6010B EPA 3050B Cobalt 10.2 0.250 mg/kg EPA 6010B EPA 3050B Copper 47.8 0.500 mg/kg EPA 6010B EPA 3050B Lead 12.5 0.500 mg/kg EPA 6010B EPA 3050B Nickel 12.5 0.250 mg/kg EPA 6010B EPA 3050B Vanadium 33.5 0.250 mg/kg EPA 6010B EPA 3050B Zinc 71.2 1.00 mg/kg EPA 6010B EPA 3050B C19-C20 5.5 5.1 mg/kg EPA 8015B (M) EPA 3050B C21-C22 13 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C29-C32 36 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C6-C44 Total 130	Barium	119		0.500	mg/kg	EPA 6010B	EPA 3050B
Cobalt 10.2 0.250 mg/kg EPA 6010B EPA 3050B Copper 47.8 0.500 mg/kg EPA 6010B EPA 3050B Lead 12.5 0.500 mg/kg EPA 6010B EPA 3050B Nickel 12.5 0.250 mg/kg EPA 6010B EPA 3050B Vanadium 33.5 0.250 mg/kg EPA 6010B EPA 3050B Zinc 71.2 1.00 mg/kg EPA 6010B EPA 3050B C19-C20 5.5 5.1 mg/kg EPA 8015B (M) EPA 3550B C21-C22 13 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 25 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C35-C24 130 5.0 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26	Beryllium	0.352		0.250	mg/kg	EPA 6010B	EPA 3050B
Copper 47.8 0.500 mg/kg EPA 6010B EPA 3050B Lead 12.5 0.500 mg/kg EPA 6010B EPA 3050B Nickel 12.5 0.250 mg/kg EPA 6010B EPA 3050B Vanadium 33.5 0.250 mg/kg EPA 6010B EPA 3050B Zinc 71.2 1.00 mg/kg EPA 6010B EPA 3050B C19-C20 5.5 5.1 mg/kg EPA 8015B (M) EPA 3550B C21-C22 13 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 25 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C34-C44 Total 130 5.0 mg/kg EPA 8015B (M) EPA 3550B Aroclor-1254 2	Chromium	16.1		0.250	mg/kg	EPA 6010B	EPA 3050B
Lead 12.5 0.500 mg/kg EPA 6010B EPA 3050B Nickel 12.5 0.250 mg/kg EPA 6010B EPA 3050B Vanadium 33.5 0.250 mg/kg EPA 6010B EPA 3050B Zinc 71.2 1.00 mg/kg EPA 6010B EPA 3050B C19-C20 5.5 5.1 mg/kg EPA 8015B (M) EPA 3550B C21-C22 13 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 25 5.1 mg/kg EPA 8015B (M) EPA 3550B C29-C32 36 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C6-C44 Total 130 5.0 mg/kg EPA 8082 EPA 350B Aroctor-1248 110 50 ug/kg EPA 8082 EPA 3540C Aroctor-1250 180 <td>Cobalt</td> <td>10.2</td> <td></td> <td>0.250</td> <td>mg/kg</td> <td>EPA 6010B</td> <td>EPA 3050B</td>	Cobalt	10.2		0.250	mg/kg	EPA 6010B	EPA 3050B
Nickel 12.5 0.250 mg/kg EPA 6010B EPA 3050B Vanadium 33.5 0.250 mg/kg EPA 6010B EPA 3050B Zinc 71.2 1.00 mg/kg EPA 6010B EPA 3050B C19-C20 5.5 5.1 mg/kg EPA 8015B (M) EPA 3550B C21-C22 13 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 25 5.1 mg/kg EPA 8015B (M) EPA 3550B C29-C32 36 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C34 36 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C36-C44 Total 130 5.0 mg/kg EPA 8015B (M) EPA 3550B Aroclor-1248 110 50 ug/kg EPA 802 EPA 3540C Aroclor-1254 240 50 ug/kg EPA 8082 EPA 3540C Aroclor-1260 180 50 ug/kg EPA 8082 EPA 3540C Aroclor-1260 180 50 ug/kg EPA 8082 EPA 3540C M-1051 (14-06-0199-6) #Inserticular Aroclor-1260 1.37 0.743 mg/kg EPA 6010B EPA 3050B Barium 103 0.495 mg/kg EPA 6010B EPA 3050B EPA 3050B Barium 103 0.495 mg/kg EPA 6010B EPA 3050B Chomium 12.6 0.248 mg/kg EPA 6010B EPA 3050B Cobalt 9.32 0.248 mg/kg EPA 6010B EPA 3050B Copper 12.0 0.495 mg/kg EPA 6010B EPA 3050B EPA 3050B Copper 12.0 0.495 mg/kg EPA 6010B EPA 3050B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B	Copper	47.8		0.500	mg/kg	EPA 6010B	EPA 3050B
Vanadium 33.5 0.250 mg/kg EPA 6010B EPA 3050B Zinc 71.2 1.00 mg/kg EPA 6010B EPA 3050B C19-C20 5.5 5.1 mg/kg EPA 8015B (M) EPA 3550B C21-C22 13 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 25 5.1 mg/kg EPA 8015B (M) EPA 3550B C29-C32 36 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C36-C44 Total 130 5.0 mg/kg EPA 8015B (M) EPA 3550B Arcolor-1248 110 50 ug/kg EPA 8082 EPA 3540C Aroclor-1260 180 50 ug/kg EPA 6010B EPA 3540C #1091 (14-06-0199-6)	Lead	12.5		0.500	mg/kg	EPA 6010B	EPA 3050B
Zinc 71.2 1.00 mg/kg EPA 6010B EPA 3050B C19-C20 5.5 5.1 mg/kg EPA 8015B (M) EPA 3550B C21-C22 13 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 25 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 36 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C37-C44 Total 130 5.0 mg/kg EPA 8015B (M) EPA 3550B C37-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C37-C37-C34 130 5.0 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C37-C31 130 5.0 ug/kg EPA 8015B (M) EPA 3550B C37-C32	Nickel	12.5		0.250	mg/kg	EPA 6010B	EPA 3050B
C19-C20 5.5 5.1 mg/kg EPA 80158 (M) EPA 35508 C21-C22 13 5.1 mg/kg EPA 80158 (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 80158 (M) EPA 3550B C25-C28 25 5.1 mg/kg EPA 80158 (M) EPA 3550B C29-C32 36 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C6-C44 Total 130 5.0 mg/kg EPA 8015B (M) EPA 3550B Aroclor-1248 110 50 ug/kg EPA 8082 EPA 3540C Aroclor-1254 240 50 ug/kg EPA 8082 EPA 3540C #1091 (14-06-0199-6) 180 50 ug/kg EPA 8082 EPA 3550B Barium 103 0.495 mg/kg EPA 6010B EPA 3050B Beryllium 0.290 0.248 mg/kg EPA 6010B EPA 3050B Cobalt	Vanadium	33.5		0.250	mg/kg	EPA 6010B	EPA 3050B
C21-C22 13 5.1 mg/kg EPA 8015B (M) EPA 3550B C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 25 5.1 mg/kg EPA 8015B (M) EPA 3550B C29-C32 36 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C6-C44 Total 130 5.0 mg/kg EPA 8015B (M) EPA 3550B Aroclor-1248 110 50 ug/kg EPA 8082 EPA 3540C Aroclor-1254 240 50 ug/kg EPA 8082 EPA 3540C #1091 (14-06-0199-6) 180 50 ug/kg EPA 8082 EPA 3540C #1091 (14-06-0199-6) 1.37 0.743 mg/kg EPA 6010B EPA 3050B Barium 103 0.495 mg/kg EPA 6010B EPA 3050B Beryllium 0.290 0.248 mg/kg EPA 6010B EPA 3050B Cob	Zinc	71.2		1.00	mg/kg	EPA 6010B	EPA 3050B
C23-C24 16 5.1 mg/kg EPA 8015B (M) EPA 3550B C25-C28 25 5.1 mg/kg EPA 8015B (M) EPA 3550B C29-C32 36 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C6-C44 Total 130 5.0 mg/kg EPA 8015B (M) EPA 3550B Aroclor-1248 110 50 ug/kg EPA 8015B (M) EPA 3550B Aroclor-1254 240 50 ug/kg EPA 8082 EPA 3540C Aroclor-1260 180 50 ug/kg EPA 8082 EPA 3540C #1091 (14-06-0199-6) 4 50 ug/kg EPA 8082 EPA 3540C #1091 (14-06-0199-6) 4 50 ug/kg EPA 8082 EPA 3540C #1091 (14-06-0199-6) 4 50 ug/kg EPA 6010B EPA 3050B Barium 103 0.495 mg/kg EPA 6010B EPA 3050B Chr	C19-C20	5.5		5.1	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28 25 5.1 mg/kg EPA 8015B (M) EPA 3550B C29-C32 36 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C6-C44 Total 130 5.0 mg/kg EPA 8015B (M) EPA 3550B Aroclor-1248 110 50 ug/kg EPA 8082 EPA 3540C Aroclor-1254 240 50 ug/kg EPA 8082 EPA 3540C Aroclor-1260 180 50 ug/kg EPA 8082 EPA 3540C #1091 (14-06-0199-6) 4 50 ug/kg EPA 8082 EPA 3540C #1091 (14-06-0199-6) 4 50 ug/kg EPA 8082 EPA 3540C #1091 (14-06-0199-6) 4 50 ug/kg EPA 6010B EPA 3500B Barium 103 0.495 mg/kg EPA 6010B EPA 3050B Beryllium 0.290 0.248 mg/kg EPA 6010B EPA 3050B Cobal	C21-C22	13		5.1	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32 36 5.1 mg/kg EPA 8015B (M) EPA 3550B C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C6-C44 Total 130 5.0 mg/kg EPA 8015B (M) EPA 3550B Aroclor-1248 110 50 ug/kg EPA 8082 EPA 3540C Aroclor-1254 240 50 ug/kg EPA 8082 EPA 3540C #1091 (14-06-0199-6) 180 50 ug/kg EPA 8082 EPA 3540C #1091 (14-06-0199-6) 1.37 0.743 mg/kg EPA 6010B EPA 3050B Barium 103 0.495 mg/kg EPA 6010B EPA 3050B Beryllium 0.290 0.248 mg/kg EPA 6010B EPA 3050B Chromium 12.6 0.248 mg/kg EPA 6010B EPA 3050B Copper 12.0 0.495 mg/kg EPA 6010B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B Vanad	C23-C24	16		5.1	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36 26 5.1 mg/kg EPA 8015B (M) EPA 3550B C6-C44 Total 130 5.0 mg/kg EPA 8015B (M) EPA 3550B Aroclor-1248 110 50 ug/kg EPA 8082 EPA 3540C Aroclor-1254 240 50 ug/kg EPA 8082 EPA 3540C Aroclor-1260 180 50 ug/kg EPA 8082 EPA 3540C #1091 (14-06-0199-6) 1.37 0.743 mg/kg EPA 6010B EPA 3050B Barium 103 0.495 mg/kg EPA 6010B EPA 3050B Beryllium 0.290 0.248 mg/kg EPA 6010B EPA 3050B Chromium 12.6 0.248 mg/kg EPA 6010B EPA 3050B Cobalt 9.32 0.248 mg/kg EPA 6010B EPA 3050B Copper 12.0 0.495 mg/kg EPA 6010B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B Vanadium	C25-C28	25		5.1	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total 130 5.0 mg/kg EPA 8015B (M) EPA 3550B Aroclor-1248 110 50 ug/kg EPA 8082 EPA 3540C Aroclor-1254 240 50 ug/kg EPA 8082 EPA 3540C Aroclor-1260 180 50 ug/kg EPA 8082 EPA 3540C #1091 (14-06-0199-6) ****	C29-C32	36		5.1	mg/kg	EPA 8015B (M)	EPA 3550B
Aroclor-1248 110 50 ug/kg EPA 8082 EPA 3540C Aroclor-1254 240 50 ug/kg EPA 8082 EPA 3540C Aroclor-1260 180 50 ug/kg EPA 8082 EPA 3540C #1091 (14-06-0199-6) Arsenic 1.37 0.743 mg/kg EPA 6010B EPA 3050B Barium 103 0.495 mg/kg EPA 6010B EPA 3050B Beryllium 0.290 0.248 mg/kg EPA 6010B EPA 3050B Chromium 12.6 0.248 mg/kg EPA 6010B EPA 3050B Cobalt 9.32 0.248 mg/kg EPA 6010B EPA 3050B Copper 12.0 0.495 mg/kg EPA 6010B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B Nickel 9.34 0.248 mg/kg EPA 6010B EPA 3050B Vanadium 32.1 0.248 mg/kg EPA 6010B EPA 3050B	C33-C36	26		5.1	mg/kg	EPA 8015B (M)	EPA 3550B
Aroclor-1254 240 50 ug/kg EPA 8082 EPA 3540C Aroclor-1260 180 50 ug/kg EPA 8082 EPA 3540C #1091 (14-06-0199-6) Arsenic 1.37 0.743 mg/kg EPA 6010B EPA 3050B Barium 103 0.495 mg/kg EPA 6010B EPA 3050B Beryllium 0.290 0.248 mg/kg EPA 6010B EPA 3050B Chromium 12.6 0.248 mg/kg EPA 6010B EPA 3050B Cobalt 9.32 0.248 mg/kg EPA 6010B EPA 3050B Copper 12.0 0.495 mg/kg EPA 6010B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B Nickel 9.34 0.248 mg/kg EPA 6010B EPA 3050B Vanadium 32.1 0.248 mg/kg EPA 6010B EPA 3050B	C6-C44 Total	130		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
Aroclor-1260 180 50 ug/kg EPA 8082 EPA 3540C #1091 (14-06-0199-6) Arsenic 1.37 0.743 mg/kg EPA 6010B EPA 3050B Barium 103 0.495 mg/kg EPA 6010B EPA 3050B Beryllium 0.290 0.248 mg/kg EPA 6010B EPA 3050B Chromium 12.6 0.248 mg/kg EPA 6010B EPA 3050B Cobalt 9.32 0.248 mg/kg EPA 6010B EPA 3050B Copper 12.0 0.495 mg/kg EPA 6010B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B Nickel 9.34 0.248 mg/kg EPA 6010B EPA 3050B Vanadium 32.1 0.248 mg/kg EPA 6010B EPA 3050B	Aroclor-1248	110		50	ug/kg	EPA 8082	EPA 3540C
#1091 (14-06-0199-6) Arsenic 1.37 0.743 mg/kg EPA 6010B EPA 3050B Barium 103 0.495 mg/kg EPA 6010B EPA 3050B Beryllium 0.290 0.248 mg/kg EPA 6010B EPA 3050B Chromium 12.6 0.248 mg/kg EPA 6010B EPA 3050B Cobalt 9.32 0.248 mg/kg EPA 6010B EPA 3050B Copper 12.0 0.495 mg/kg EPA 6010B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B Nickel 9.34 0.248 mg/kg EPA 6010B EPA 3050B Vanadium 32.1 0.248 mg/kg EPA 6010B EPA 3050B	Aroclor-1254	240		50	ug/kg	EPA 8082	EPA 3540C
Arsenic 1.37 0.743 mg/kg EPA 6010B EPA 3050B Barium 103 0.495 mg/kg EPA 6010B EPA 3050B Beryllium 0.290 0.248 mg/kg EPA 6010B EPA 3050B Chromium 12.6 0.248 mg/kg EPA 6010B EPA 3050B Cobalt 9.32 0.248 mg/kg EPA 6010B EPA 3050B Copper 12.0 0.495 mg/kg EPA 6010B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B Nickel 9.34 0.248 mg/kg EPA 6010B EPA 3050B Vanadium 32.1 0.248 mg/kg EPA 6010B EPA 3050B	Aroclor-1260	180		50	ug/kg	EPA 8082	EPA 3540C
Barium 103 0.495 mg/kg EPA 6010B EPA 3050B Beryllium 0.290 0.248 mg/kg EPA 6010B EPA 3050B Chromium 12.6 0.248 mg/kg EPA 6010B EPA 3050B Cobalt 9.32 0.248 mg/kg EPA 6010B EPA 3050B Copper 12.0 0.495 mg/kg EPA 6010B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B Nickel 9.34 0.248 mg/kg EPA 6010B EPA 3050B Vanadium 32.1 0.248 mg/kg EPA 6010B EPA 3050B	#1091 (14-06-0199-6)						
Beryllium 0.290 0.248 mg/kg EPA 6010B EPA 3050B Chromium 12.6 0.248 mg/kg EPA 6010B EPA 3050B Cobalt 9.32 0.248 mg/kg EPA 6010B EPA 3050B Copper 12.0 0.495 mg/kg EPA 6010B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B Nickel 9.34 0.248 mg/kg EPA 6010B EPA 3050B Vanadium 32.1 0.248 mg/kg EPA 6010B EPA 3050B	Arsenic	1.37		0.743	mg/kg	EPA 6010B	EPA 3050B
Chromium 12.6 0.248 mg/kg EPA 6010B EPA 3050B Cobalt 9.32 0.248 mg/kg EPA 6010B EPA 3050B Copper 12.0 0.495 mg/kg EPA 6010B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B Nickel 9.34 0.248 mg/kg EPA 6010B EPA 3050B Vanadium 32.1 0.248 mg/kg EPA 6010B EPA 3050B	Barium	103		0.495	mg/kg	EPA 6010B	EPA 3050B
Cobalt 9.32 0.248 mg/kg EPA 6010B EPA 3050B Copper 12.0 0.495 mg/kg EPA 6010B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B Nickel 9.34 0.248 mg/kg EPA 6010B EPA 3050B Vanadium 32.1 0.248 mg/kg EPA 6010B EPA 3050B	Beryllium	0.290		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper 12.0 0.495 mg/kg EPA 6010B EPA 3050B Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B Nickel 9.34 0.248 mg/kg EPA 6010B EPA 3050B Vanadium 32.1 0.248 mg/kg EPA 6010B EPA 3050B	Chromium	12.6		0.248	mg/kg	EPA 6010B	EPA 3050B
Lead 0.910 0.495 mg/kg EPA 6010B EPA 3050B Nickel 9.34 0.248 mg/kg EPA 6010B EPA 3050B Vanadium 32.1 0.248 mg/kg EPA 6010B EPA 3050B	Cobalt	9.32		0.248	mg/kg	EPA 6010B	EPA 3050B
Nickel 9.34 0.248 mg/kg EPA 6010B EPA 3050B Vanadium 32.1 0.248 mg/kg EPA 6010B EPA 3050B	Copper	12.0		0.495	mg/kg	EPA 6010B	EPA 3050B
Vanadium 32.1 0.248 mg/kg EPA 6010B EPA 3050B	Lead	0.910		0.495	mg/kg	EPA 6010B	EPA 3050B
· ·	Nickel	9.34		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc 43.5 0.990 mg/kg EPA 6010B EPA 3050B	Vanadium	32.1		0.248	mg/kg	EPA 6010B	EPA 3050B
	Zinc	43.5		0.990	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0199

Project Name: Former Pechiney Cast Plate / 0106270030

Received: 06/03/14

Attn: Linda Conlan Page 2 of 4

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1092 (14-06-0199-7)						
Arsenic	1.13		0.728	mg/kg	EPA 6010B	EPA 3050B
Barium	108		0.726	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.288		0.463	mg/kg	EPA 6010B	EPA 3050B
Chromium	13.3		0.243		EPA 6010B	EPA 3050B
Cobalt	9.87		0.243	mg/kg	EPA 6010B	EPA 3050B
	9.67 12.9			mg/kg	EPA 6010B EPA 6010B	EPA 3050B
Copper			0.485	mg/kg		
Lead	0.671		0.485	mg/kg	EPA 6010B	EPA 3050B
Nickel	9.58		0.243	mg/kg	EPA 6010B	EPA 3050B
Vanadium	32.6		0.243	mg/kg	EPA 6010B	EPA 3050B
Zinc	46.0		0.971	mg/kg	EPA 6010B	EPA 3050B
#1093 (14-06-0199-8)						
Arsenic	1.79		0.718	mg/kg	EPA 6010B	EPA 3050B
Barium	114		0.478	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.343		0.239	mg/kg	EPA 6010B	EPA 3050B
Chromium	14.7		0.239	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.3		0.239	mg/kg	EPA 6010B	EPA 3050B
Copper	14.2		0.478	mg/kg	EPA 6010B	EPA 3050B
Lead	1.18		0.478	mg/kg	EPA 6010B	EPA 3050B
Nickel	10.9		0.239	mg/kg	EPA 6010B	EPA 3050B
Vanadium	35.2		0.239	mg/kg	EPA 6010B	EPA 3050B
Zinc	48.4		0.957	mg/kg	EPA 6010B	EPA 3050B
C25-C28	6.3		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	7.5		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	24		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
#1094 (14-06-0199-9)						
Arsenic	1.69		0.721	mg/kg	EPA 6010B	EPA 3050B
Barium	105		0.481	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.319		0.240	mg/kg	EPA 6010B	EPA 3050B
Chromium	14.3		0.240	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.1		0.240	mg/kg	EPA 6010B	EPA 3050B
Copper	16.5		0.481	mg/kg	EPA 6010B	EPA 3050B
Lead	0.929		0.481	mg/kg	EPA 6010B	EPA 3050B
Nickel	10.4		0.240	mg/kg	EPA 6010B	EPA 3050B
Vanadium	33.9		0.240	mg/kg	EPA 6010B	EPA 3050B
Zinc	45.9		0.962	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.0862		0.0833	mg/kg	EPA 7471A	EPA 7471A Total
,	-			3 3		

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0199

Project Name: Former Pechiney Cast Plate / 0106270030

Received: 06/03/14

Attn: Linda Conlan Page 3 of 4

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1095 (14-06-0199-10)						
Arsenic	0.928		0.743	mg/kg	EPA 6010B	EPA 3050B
Barium	89.9		0.495	mg/kg	EPA 6010B	EPA 3050B
Chromium	10.6		0.248	mg/kg	EPA 6010B	EPA 3050B
Cobalt	8.12		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper	9.84		0.495	mg/kg	EPA 6010B	EPA 3050B
Nickel	7.88		0.248	mg/kg	EPA 6010B	EPA 3050B
Vanadium	28.3		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc	37.7		0.990	mg/kg	EPA 6010B	EPA 3050B
#1096 (14-06-0199-11)						
Arsenic	1.32		0.754	mg/kg	EPA 6010B	EPA 3050B
Barium	111		0.503	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.340		0.251	mg/kg	EPA 6010B	EPA 3050B
Chromium	14.7		0.251	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.4		0.251	mg/kg	EPA 6010B	EPA 3050B
Copper	15.4		0.503	mg/kg	EPA 6010B	EPA 3050B
Lead	1.24		0.503	mg/kg	EPA 6010B	EPA 3050B
Nickel	11.1		0.251	mg/kg	EPA 6010B	EPA 3050B
Vanadium	31.0		0.251	mg/kg	EPA 6010B	EPA 3050B
Zinc	47.5		1.01	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0199

Project Name: Former Pechiney Cast Plate / 0106270030

Received: 06/03/14

Attn: Linda Conlan Page 4 of 4

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1097 (14-06-0199-12)						
Arsenic	2.84		0.735	mg/kg	EPA 6010B	EPA 3050B
Barium	112		0.490	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.278		0.245	mg/kg	EPA 6010B	EPA 3050B
Chromium	12.9		0.245	mg/kg	EPA 6010B	EPA 3050B
Cobalt	6.53		0.245	mg/kg	EPA 6010B	EPA 3050B
Copper	23.2		0.490	mg/kg	EPA 6010B	EPA 3050B
Lead	19.5		0.490	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.261		0.245	mg/kg	EPA 6010B	EPA 3050B
Nickel	10.1		0.245	mg/kg	EPA 6010B	EPA 3050B
Vanadium	21.9		0.245	mg/kg	EPA 6010B	EPA 3050B
Zinc	52.2		0.980	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.0938		0.0833	mg/kg	EPA 7471A	EPA 7471A Total
C23-C24	26		25	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	30		25	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	57		25	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	45		25	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	38		25	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	260		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
Aroclor-1248	3800		500	ug/kg	EPA 8082	EPA 3540C
Aroclor-1260	560		50	ug/kg	EPA 8082	EPA 3540C
#1098 (14-06-0199-13)						
Aroclor-1248	520		50	ug/kg	EPA 8082	EPA 3540C
Aroclor-1254	450		50	ug/kg	EPA 8082	EPA 3540C
Aroclor-1260	180		50	ug/kg	EPA 8082	EPA 3540C

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/03/14 14-06-0199 EPA 3550B

Units:

EPA 8015B (M) mg/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 1 of 9

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1090		14-06-0199-5-A	06/03/14 09:32	Solid	GC 48	06/03/14	06/04/14 03:48	140603B12
Comment(s):	- The total concentration i	ncludes individual ca	rbon range cond	centrations (es	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
C6			ND	5.1		1.00		
C7			ND	5.1		1.00		
C8			ND	5.1		1.00		
C9-C10			ND	5.1		1.00		
C11-C12			ND	5.1		1.00		
C13-C14			ND	5.1		1.00		
C15-C16			ND	5.1		1.00		
C17-C18			ND	5.1		1.00		
C19-C20			5.5	5.1		1.00		
C21-C22			13	5.1		1.00		
C23-C24			16	5.1		1.00		
C25-C28			25	5.1		1.00		
C29-C32			36	5.1		1.00		
C33-C36			26	5.1		1.00		
C37-C40			ND	5.1		1.00		
C41-C44			ND	5.1		1.00		
C6-C44 Total			130	5.0)	1.00		
Surrogate			Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane			85	61-	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

 Date Received:
 06/03/14

 Work Order:
 14-06-0199

 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

 Units:
 mg/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 2 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1091	14-06-0199-6-A	06/03/14 09:34	Solid	GC 48	06/03/14	06/04/14 04:03	140603B12
<u>Parameter</u>		Result	<u>RL</u>	•	<u>DF</u>	Qua	alifiers
C6		ND	4.9		1.00		
C7		ND	4.9		1.00		
C8		ND	4.9		1.00		
C9-C10		ND	4.9		1.00		
C11-C12		ND	4.9		1.00		
C13-C14		ND	4.9		1.00		
C15-C16		ND	4.9		1.00		
C17-C18		ND	4.9		1.00		
C19-C20		ND	4.9		1.00		
C21-C22		ND	4.9		1.00		
C23-C24		ND	4.9		1.00		
C25-C28		ND	4.9		1.00		
C29-C32		ND	4.9		1.00		
C33-C36		ND	4.9		1.00		
C37-C40		ND	4.9		1.00		
C41-C44		ND	4.9		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
n-Octacosane		89	61-	145			

06/03/14

mg/kg

Analytical Report

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: 14-06-0199 EPA 3550B Preparation: Method: EPA 8015B (M) Units:

Project: Former Pechiney Cast Plate / 0106270030

Page 3 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1092	14-06-0199-7-A	06/03/14 09:36	Solid	GC 48	06/03/14	06/04/14 04:19	140603B12
<u>Parameter</u>		Result	RL	=	<u>DF</u>	Qua	alifiers
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	Qualifiers		
n-Octacosane		91	61	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-0199 EPA 3550B

06/03/14

Units:

EPA 8015B (M) mg/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 4 of 9

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1093		14-06-0199-8-A	06/03/14 09:33	Solid	GC 48	06/03/14	06/04/14 04:35	140603B12
Comment(s):	- The total concentration	includes individual car	rbon range cond	centrations (es	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
C6			ND	5.0)	1.00		
C7			ND	5.0)	1.00		
C8			ND	5.0)	1.00		
C9-C10			ND	5.0)	1.00		
C11-C12			ND	5.0)	1.00		
C13-C14			ND	5.0)	1.00		
C15-C16			ND	5.0)	1.00		
C17-C18			ND	5.0)	1.00		
C19-C20			ND	5.0)	1.00		
C21-C22			ND	5.0)	1.00		
C23-C24			ND	5.0)	1.00		
C25-C28			6.3	5.0)	1.00		
C29-C32			7.5	5.0)	1.00		
C33-C36			ND	5.0)	1.00		
C37-C40			ND	5.0)	1.00		
C41-C44			ND	5.0)	1.00		
C6-C44 Total			24	5.0)	1.00		
<u>Surrogate</u>			Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane			85	61-	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/03/14 14-06-0199 EPA 3550B EPA 8015B (M)

mg/kg

Units: m Page 5 of 9

Project: Former Pechiney Cast Plate / 0106270030

mo OC Batch II

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1094	14-06-0199-9-A	06/03/14 09:34	Solid	GC 48	06/03/14	06/04/14 04:51	140603B12
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	<u>llifiers</u>
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		91	61-	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/03/14 14-06-0199 EPA 3550B EPA 8015B (M)

Units:

mg/kg Page 6 of 9

Project: Former Pechiney Cast Plate / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1095	14-06-0199-10-A	06/03/14 09:35	Solid	GC 48	06/03/14	06/04/14 05:07	140603B12
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
C6		ND	4.9)	1.00		
C7		ND	4.9)	1.00		
C8		ND	4.9)	1.00		
C9-C10		ND	4.9)	1.00		
C11-C12		ND	4.9)	1.00		
C13-C14		ND	4.9)	1.00		
C15-C16		ND	4.9)	1.00		
C17-C18		ND	4.9)	1.00		
C19-C20		ND	4.9)	1.00		
C21-C22		ND	4.9)	1.00		
C23-C24		ND	4.9)	1.00		
C25-C28		ND	4.9)	1.00		
C29-C32		ND	4.9)	1.00		
C33-C36		ND	4.9)	1.00		
C37-C40		ND	4.9)	1.00		
C41-C44		ND	4.9)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		88	61-	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

14-06-0199 EPA 3550B EPA 8015B (M)

06/03/14

Units:

mg/kg Page 7 of 9

Project: Former Pechiney Cast Plate / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1096	14-06-0199-11-A	06/03/14 09:37	Solid	GC 48	06/03/14	06/04/14 05:23	140603B12
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>alifiers</u>
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	Qualifiers		
n-Octacosane		89	61	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-0199 EPA 3550B EPA 8015B (M)

06/03/14

Units:

mg/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 8 of 9

Client Sample Number		Lab Sample Date/Time Number Collected		Matrix I	nstrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1097		14-06-0199-12-A	06/03/14 09:40	Solid (GC 48	06/03/14	06/04/14 05:39	140603B12
Comment(s):	- The total concentrat	ion includes individual car	bon range cond	centrations (estir	mated), if any	, below the RL	reported as ND	
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
C6			ND	25		5.00		
C7			ND	25		5.00		
C8			ND	25		5.00		
C9-C10			ND	25		5.00		
C11-C12			ND	25		5.00		
C13-C14			ND	25		5.00		
C15-C16			ND	25		5.00		
C17-C18			ND	25		5.00		
C19-C20			ND	25		5.00		
C21-C22			ND	25		5.00		
C23-C24			26	25		5.00		
C25-C28			30	25		5.00		
C29-C32			57	25		5.00		
C33-C36			45	25		5.00		
C37-C40			38	25		5.00		
C41-C44			ND	25		5.00		
C6-C44 Total			260	5.0		1.00		
Surrogate			Rec. (%)	<u>Cont</u>	rol Limits	Qualifiers		
n-Octacosane			96	61-14	45			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

Units:

06/03/14 14-06-0199 EPA 3550B EPA 8015B (M)

mg/kg Page 9 of 9

Project: Former Pechiney Cast Plate / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-937	N/A	Solid	GC 48	06/03/14	06/04/14 02:45	140603B12
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
C6		ND	5.0		1.00		
C7		ND	5.0		1.00		
C8		ND	5.0		1.00		
C9-C10		ND	5.0		1.00		
C11-C12		ND	5.0		1.00		
C13-C14		ND	5.0		1.00		
C15-C16		ND	5.0		1.00		
C17-C18		ND	5.0		1.00		
C19-C20		ND	5.0		1.00		
C21-C22		ND	5.0		1.00		
C23-C24		ND	5.0		1.00		
C25-C28		ND	5.0		1.00		
C29-C32		ND	5.0		1.00		
C33-C36		ND	5.0		1.00		
C37-C40		ND	5.0		1.00		
C41-C44		ND	5.0		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	Qualifiers		
n-Octacosane		87	61-1	45			

Units:

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

EPA 3050B EPA 6010B mg/kg

14-06-0199

06/03/14

Project: Former Pechiney Cast Plate / 0106270030

Page 1 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1090	14-06-0199-5-A	06/03/14 09:32	Solid	ICP 7300	06/03/14	06/04/14 12:55	140603L05
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	(0.750	1.00		
Arsenic		2.47	(0.750	1.00		
Barium		119	(0.500	1.00		
Beryllium		0.352	(0.250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		16.1	(0.250	1.00		
Cobalt		10.2	(0.250	1.00		
Copper		47.8	(0.500	1.00		
Lead		12.5	(0.500	1.00		
Molybdenum		ND	(0.250	1.00		
Nickel		12.5	(0.250	1.00		
Selenium		ND	(0.750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	(0.750	1.00		
Vanadium		33.5	(0.250	1.00		
Zinc		71.2	•	1.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Client Sample Number

Date Received: Work Order: Preparation: Method:

06/03/14 14-06-0199 **EPA 3050B** EPA 6010B

Units: mg/kg Page 2 of 9

Project: Former Pechiney Cast Plate / 0106270030

Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
14-06-0199-6-A	06/03/14 09:34	Solid	ICP 7300	06/03/14	06/04/14 12:56	140603L05
	Result	<u>R</u>	<u>L</u>	DF	Qua	alifiers

#1091	14-06-0199-6-A	06/03/14 09:34	Solid ICP 7300	06/03/14	06/04/14 12:56	140603L05
Parameter		Result	<u>RL</u>	<u>DF</u>	Qu	alifiers
Antimony		ND	0.743	0.990		
Arsenic		1.37	0.743	0.990		
Barium		103	0.495	0.990		
Beryllium		0.290	0.248	0.990		
Cadmium		ND	0.495	0.990		
Chromium		12.6	0.248	0.990		
Cobalt		9.32	0.248	0.990		
Copper		12.0	0.495	0.990		
Lead		0.910	0.495	0.990		
Molybdenum		ND	0.248	0.990		
Nickel		9.34	0.248	0.990		
Selenium		ND	0.743	0.990		
Silver		ND	0.248	0.990		
Thallium		ND	0.743	0.990		
Vanadium		32.1	0.248	0.990		
Zinc		43.5	0.990	0.990		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

06/03/14 14-06-0199 **EPA 3050B** EPA 6010B

Units: mg/kg Page 3 of 9

Project: Former Pechiney Cast Plate / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1092	14-06-0199-7-A	06/03/14 09:36	Solid	ICP 7300	06/03/14	06/04/14 12:57	140603L05
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Antimony		ND	().728	0.971		
Arsenic		1.13	().728	0.971		
Barium		108	().485	0.971		
Beryllium		0.288	().243	0.971		
Cadmium		ND	().485	0.971		
Chromium		13.3	().243	0.971		
Cobalt		9.87	().243	0.971		
Copper		12.9	().485	0.971		
Lead		0.671	(0.485	0.971		
Molybdenum		ND	().243	0.971		
Nickel		9.58	().243	0.971		
Selenium		ND	().728	0.971		
Silver		ND	().243	0.971		
Thallium		ND	().728	0.971		
Vanadium		32.6	().243	0.971		
Zinc		46.0	().971	0.971		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

06/03/14 14-06-0199 **EPA 3050B** EPA 6010B

Units: mg/kg Page 4 of 9

Project: Former Pechiney Cast Plate / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1093	14-06-0199-8-A	06/03/14 09:33	Solid	ICP 7300	06/03/14	06/04/14 12:58	140603L05
<u>Parameter</u>		Result]	RL	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.718	0.957		
Arsenic		1.79	(0.718	0.957		
Barium		114	(0.478	0.957		
Beryllium		0.343	(0.239	0.957		
Cadmium		ND	(0.478	0.957		
Chromium		14.7	(0.239	0.957		
Cobalt		10.3	(0.239	0.957		
Copper		14.2	(0.478	0.957		
Lead		1.18	(0.478	0.957		
Molybdenum		ND	(0.239	0.957		
Nickel		10.9	(0.239	0.957		
Selenium		ND	(0.718	0.957		
Silver		ND	(0.239	0.957		
Thallium		ND	(0.718	0.957		
Vanadium		35.2	(0.239	0.957		
Zinc		48.4	(0.957	0.957		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Vanadium

Zinc

Date Received:
Work Order:
Preparation:
Method:

0.240

0.962

06/03/14 14-06-0199 EPA 3050B EPA 6010B

Units: mg/kg
Page 5 of 9

0.962

0.962

Project: Former Pechiney Cast Plate / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1094	14-06-0199-9-A	06/03/14 09:34	Solid	ICP 7300	06/03/14	06/04/14 13:03	140603L05
Parameter		<u>Result</u>	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().721	0.962		
Arsenic		1.69	().721	0.962		
Barium		105	(0.481	0.962		
Beryllium		0.319	(0.240	0.962		
Cadmium		ND	(0.481	0.962		
Chromium		14.3	(0.240	0.962		
Cobalt		10.1	(0.240	0.962		
Copper		16.5	(0.481	0.962		
Lead		0.929	(0.481	0.962		
Molybdenum		ND	(0.240	0.962		
Nickel		10.4	(0.240	0.962		
Selenium		ND	().721	0.962		
Silver		ND	(0.240	0.962		
Thallium		ND	().721	0.962		

33.9

45.9

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/03/14 14-06-0199 EPA 3050B

Units:

EPA 6010B mg/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 6 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1095	14-06-0199-10-A	06/03/14 09:35	Solid	ICP 7300	06/03/14	06/04/14 13:04	140603L05
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.743	0.990		
Arsenic		0.928	(0.743	0.990		
Barium		89.9	(0.495	0.990		
Beryllium		ND	(0.248	0.990		
Cadmium		ND	(0.495	0.990		
Chromium		10.6	(0.248	0.990		
Cobalt		8.12	(0.248	0.990		
Copper		9.84	(0.495	0.990		
Lead		ND	(0.495	0.990		
Molybdenum		ND	(0.248	0.990		
Nickel		7.88	(0.248	0.990		
Selenium		ND	().743	0.990		
Silver		ND	(0.248	0.990		
Thallium		ND	(0.743	0.990		
Vanadium		28.3	().248	0.990		
Zinc		37.7	(0.990	0.990		

Units:

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

14-06-0199 EPA 3050B EPA 6010B

06/03/14

mg/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 7 of 9

0" 10 1 11 1		D . /T:			D (D . T:	000.
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1096	14-06-0199-11-A	06/03/14 09:37	Solid	ICP 7300	06/03/14	06/04/14 13:06	140603L05
Parameter	·	Result	<u>F</u>	<u> </u>	<u>DF</u>	Qua	lifiers
Antimony		ND	C).754	1.01		
Arsenic		1.32	C).754	1.01		
Barium		111	C	0.503	1.01		
Beryllium		0.340	C).251	1.01		
Cadmium		ND	C	0.503	1.01		
Chromium		14.7	C).251	1.01		
Cobalt		10.4	C).251	1.01		
Copper		15.4	C	0.503	1.01		
Lead		1.24	C	0.503	1.01		
Molybdenum		ND	C).251	1.01		
Nickel		11.1	C).251	1.01		
Selenium		ND	C).754	1.01		
Silver		ND	C).251	1.01		
Thallium		ND	C).754	1.01		
Vanadium		31.0	C).251	1.01		
Zinc		47.5	1	1.01	1.01		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/03/14 14-06-0199 EPA 3050B

EPA 6010B mg/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 8 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1097	14-06-0199-12-A	06/03/14 09:40	Solid	ICP 7300	06/03/14	06/04/14 13:07	140603L05
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().735	0.980		
Arsenic		2.84	().735	0.980		
Barium		112	(0.490	0.980		
Beryllium		0.278	().245	0.980		
Cadmium		ND	(0.490	0.980		
Chromium		12.9	().245	0.980		
Cobalt		6.53	().245	0.980		
Copper		23.2	(0.490	0.980		
Lead		19.5	(0.490	0.980		
Molybdenum		0.261	().245	0.980		
Nickel		10.1	().245	0.980		
Selenium		ND	().735	0.980		
Silver		ND	().245	0.980		
Thallium		ND	().735	0.980		
Vanadium		21.9	().245	0.980		
Zinc		52.2	(0.980	0.980		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/03/14 14-06-0199 EPA 3050B

EPA 6010B mg/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 9 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-18446	N/A	Solid	ICP 7300	06/03/14	06/04/14 12:18	140603L05
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	C).750	1.00		
Arsenic		ND	C).750	1.00		
Barium		ND	C).500	1.00		
Beryllium		ND	C).250	1.00		
Cadmium		ND	C).500	1.00		
Chromium		ND	C	0.250	1.00		
Cobalt		ND	C	0.250	1.00		
Copper		ND	C	0.500	1.00		
Lead		ND	C	0.500	1.00		
Molybdenum		ND	C).250	1.00		
Nickel		ND	C	0.250	1.00		
Selenium		ND	C).750	1.00		
Silver		ND	C	0.250	1.00		
Thallium		ND	C).750	1.00		
Vanadium		ND	C	0.250	1.00		
Zinc		ND	1	.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

14-06-0199 EPA 7471A Total EPA 7471A mg/kg

06/03/14

Project: Former Pechiney Cast Plate / 0106270030

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1090	14-06-0199-5-a	06/03/14 09:32	Solid	Mercury 05	06/04/14	06/04/14 17:24	140604L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0833	1.00		
#1091	14-06-0199-6-a	06/03/14 09:34	Solid	Mercury 05	06/04/14	06/04/14 17:31	140604L01
Parameter Parame		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0794	1.00		
#1092	14-06-0199-7-a	06/03/14 09:36	Solid	Mercury 05	06/04/14	06/04/14 17:33	140604L01
Parameter Parameter		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0806	1.00		
#1093	14-06-0199-8-a	06/03/14 09:33	Solid	Mercury 05	06/04/14	06/04/14 17:35	140604L01
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0820	1.00		
#1094	14-06-0199-9-a	06/03/14 09:34	Solid	Mercury 05	06/04/14	06/04/14 17:38	140604L01
Parameter Parameter		Result		RL	DF	Qua	alifiers
Mercury		0.0862		0.0833	1.00		
#1095	14-06-0199-10-a	06/03/14 09:35	Solid	Mercury 05	06/04/14	06/04/14 17:40	140604L01
Parameter Parameter		Result	_	RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0806	1.00		
‡ 1096	14-06-0199-11-a	06/03/14 09:37	Solid	Mercury 05	06/04/14	06/04/14 17:47	140604L01
Parameter Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0847	1.00		
#1097	14-06-0199-12-a	06/03/14 09:40	Solid	Mercury 05	06/04/14	06/04/14 17:49	140604L01
Parameter Parameter		Result		RL	DF	Qua	alifiers

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Mercury

Project: Former Pechiney Cast Plate / 0106270030

Date Received: Work Order: Preparation: Method:

0.0833

14-06-0199 EPA 7471A Total **EPA 7471A**

06/03/14

Units: mg/kg Page 2 of 2

1.00

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-272-285	N/A	Solid	Mercury 05	06/04/14	06/04/14 17:20	140604L01
<u>Parameter</u>		Result	RI	<u> </u>	DF	Qua	alifiers

ND

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/03/14 14-06-0199 EPA 3540C EPA 8082

Page 1 of 8

Units: ug/kg

Project: Former Pechiney Cast Plate / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
886-V-O-CS-001	14-06-0199-1-A	06/03/14 07:25	Concrete	GC 31	06/03/14	06/05/14 15:45	140603L19
Parameter		<u>Result</u>	RL		<u>DF</u>	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		140	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Co	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		109	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		115	50-	130			

886-V-O-CS-002	14-06-0199-2-A	06/03/14 07:30	Concrete GC 31	06/03/14	06/05/14 16:04	140603L19
Parameter		Result	<u>RL</u>	<u>DF</u>	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		116	60-125			
2,4,5,6-Tetrachloro-m-Xylene		122	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/03/14 14-06-0199 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 2 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
293-IIIA-P/S-CS-034	14-06-0199-3-A	06/03/14 07:45	Concrete	GC 31	06/03/14	06/05/14 16:24	140603L19
<u>Parameter</u>	·	Result	<u>RL</u>	•	<u>DF</u>	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		113	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		120	50-	130			

293-IIIA-P/S-CS-035	14-06-0199-4-A	06/03/14 07:52	Concrete GC 31	06/03/14	06/05/14 140603L19 16:43
Parameter		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Aroclor-1016		ND	50	1.00	
Aroclor-1221		ND	50	1.00	
Aroclor-1232		ND	50	1.00	
Aroclor-1242		ND	50	1.00	
Aroclor-1248		140	50	1.00	
Aroclor-1254		ND	50	1.00	
Aroclor-1260		97	50	1.00	
Aroclor-1262		ND	50	1.00	
Aroclor-1268		ND	50	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
Decachlorobiphenyl		106	60-125		
2,4,5,6-Tetrachloro-m-Xylene		116	50-130		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/03/14 14-06-0199 EPA 3540C EPA 8082

Units:

ug/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 3 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1090	14-06-0199-5-A	06/03/14 09:32	Solid	GC 31	06/03/14	06/05/14 17:02	140603L19
Parameter		Result	RL	.	DF	Qua	alifiers
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		110	50		1.00		
Aroclor-1254		240	50		1.00		
Aroclor-1260		180	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
<u>Surrogate</u>		Rec. (%)	Co	ontrol Limits	Qualifiers		
Decachlorobiphenyl		112	60	-125			
2,4,5,6-Tetrachloro-m-Xylene		121	50	-130			

#1091	14-06-0199-6-A	06/03/14 09:34	Solid GC 31	06/03/14	06/05/14 17:21	140603L19
Parameter		Result	<u>RL</u>	DF	Qu	<u>alifiers</u>
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		112	60-125			
2,4,5,6-Tetrachloro-m-Xylene		122	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/03/14 14-06-0199 EPA 3540C EPA 8082

ug/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 4 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1092	14-06-0199-7-A	06/03/14 09:36	Solid	GC 31	06/03/14	06/05/14 17:40	140603L19
Parameter		<u>Result</u>	RL	•	<u>DF</u>	Qua	<u>lifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
<u>Surrogate</u>		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		109	60-	-125			
2,4,5,6-Tetrachloro-m-Xylene		121	50-	-130			

#1093	14-06-0199-8-A	06/03/14 09:33	Solid GC 31	06/03/14	06/05/14 140603L19 17:59
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Aroclor-1016		ND	50	1.00	
Aroclor-1221		ND	50	1.00	
Aroclor-1232		ND	50	1.00	
Aroclor-1242		ND	50	1.00	
Aroclor-1248		ND	50	1.00	
Aroclor-1254		ND	50	1.00	
Aroclor-1260		ND	50	1.00	
Aroclor-1262		ND	50	1.00	
Aroclor-1268		ND	50	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
Decachlorobiphenyl		113	60-125		
2,4,5,6-Tetrachloro-m-Xylene		120	50-130		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/03/14 14-06-0199 EPA 3540C EPA 8082

ug/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 5 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1094	14-06-0199-9-A	06/03/14 09:34	Solid	GC 31	06/03/14	06/05/14 18:18	140603L19
Parameter		Result	<u>RL</u>		DF	Qua	<u>lifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Cor	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		132	60-	125	2,7		
2,4,5,6-Tetrachloro-m-Xylene		138	50-	130	2,7		

#1095	14-06-0199-10-A	06/03/14 09:35	Solid GC 31	06/03/14	06/05/14 18:37	140603L19
<u>Parameter</u>		Result	<u>RL</u>	DF	Qu	<u>alifiers</u>
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		112	60-125			
2,4,5,6-Tetrachloro-m-Xylene		116	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/03/14 14-06-0199 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 6 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1096	14-06-0199-11-A	06/03/14 09:37	Solid	GC 31	06/03/14	06/05/14 18:57	140603L19
Parameter	·	Result	RL	:	DF	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		151	60	-125	2,7		
2,4,5,6-Tetrachloro-m-Xylene		155	50	-130	2,7		

#1097	14-06-0199-12-A	06/03/14 09:40	Solid G	GC 31 06/03/14	06/05/14 19:16	140603L19
<u>Parameter</u>		Result	RL	<u>DF</u>	Qı	<u>ualifiers</u>
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		560	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	<u>Contr</u>	ol Limits Qualifie	ers	
Decachlorobiphenyl		143	60-12	5 2,7		
2,4,5,6-Tetrachloro-m-Xylene		115	50-13	0		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

14-06-0199 EPA 3540C EPA 8082

06/03/14

ug/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 7 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1097	14-06-0199-12-A	06/03/14 09:40	Solid	GC 31	06/03/14	06/06/14 10:52	140603L19
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Aroclor-1248		3800		500	10.0		
<u>Surrogate</u>		Rec. (%)		Control Limits	Qualifiers		
Decachlorobiphenyl		162		60-125	1,2,7		
2,4,5,6-Tetrachloro-m-Xylene		120		50-130			

#1098	14-06-0199-13-A	06/03/14 09:39	Solid GC 31	06/03/14	06/05/14 19:35	140603L19
<u>Parameter</u>		Result	<u>RL</u>	DF	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		520	50	1.00		
Aroclor-1254		450	50	1.00		
Aroclor-1260		180	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		125	60-125			
2,4,5,6-Tetrachloro-m-Xylene		112	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/03/14 14-06-0199 EPA 3540C EPA 8082

Units:

ug/kg Page 8 of 8

Project: Former Pechiney Cast Plate / 0106270030

ima OC Batch II

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix I	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-02-003-261	N/A	Solid (GC 31	06/03/14	06/05/14 15:07	140603L19
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	lifiers
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Cont	rol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		118	60-12	25			
2,4,5,6-Tetrachloro-m-Xylene		115	50-13	30			

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate / 0106270030

Date Received: Work Order: Preparation:

14-06-0199 EPA 3550B

06/03/14

Method:

EPA 8015B (M)

Page 1 of 4

Quality Control Sample ID	Туре	Matrix	Instrume	ent Date Pr	repared Date Analyzed	MS/MSD Bat	ch Number
#1096	Sample	Solid	GC 48	06/03/1	4 06/04/14 05:2	3 140603S12	
#1096	Matrix Spike	Solid	GC 48	06/03/1	4 06/04/14 03:1	6 140603S12	
#1096	Matrix Spike Dupl	icate Solid	GC 48	06/03/1	4 06/04/14 03:3	2 140603S12	
Parameter	Sample Sp Conc. Ad	ike <u>MS</u> ded <u>Conc.</u>	<u>MS</u> <u>MS</u> <u>MS</u> <u>MS</u>	ISD MSD onc. %Re	%Rec. CL RP	D RPD CL	Qualifiers
TPH as Diesel	ND 400	0.0 318.8	80 3.	29.7 82	64-130 3	0-15	

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Zinc

Project: Former Pechiney Cast Plate / 0106270030

71.22

25.00

96.48

Date Received: Work Order: Preparation: Method: 06/03/14 14-06-0199 EPA 3050B EPA 6010B

Page 2 of 4

Quality Control Sample ID	Type		Matrix	Ins	trument	Date Prepare	d Date Ana	lyzed	MS/MSD Ba	tch Number
#1090	Sample		Solid	ICI	7300	06/03/14	06/04/14	12:55	140603S05	
#1090	Matrix Spike		Solid	ICI	7300	06/03/14	06/04/14	12:53	140603S05	
#1090	Matrix Spike	Duplicate	Solid	ICI	7300	06/03/14	06/04/14	12:54	140603S05	
<u>Parameter</u>	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	13.09	52	14.16	57	50-115	8	0-20	
Arsenic	2.471	25.00	26.72	97	27.47	100	75-125	3	0-20	
Barium	119.2	25.00	144.2	4X	140.8	4X	75-125	4X	0-20	Q
Beryllium	0.3524	25.00	26.20	103	26.86	106	75-125	2	0-20	
Cadmium	ND	25.00	25.25	101	25.88	104	75-125	2	0-20	
Chromium	16.10	25.00	44.00	112	42.61	106	75-125	3	0-20	
Cobalt	10.20	25.00	35.77	102	36.47	105	75-125	2	0-20	
Copper	47.79	25.00	67.01	77	69.49	87	75-125	4	0-20	
Lead	12.53	25.00	36.97	98	40.53	112	75-125	9	0-20	
Molybdenum	ND	25.00	25.09	100	25.54	102	75-125	2	0-20	
Nickel	12.45	25.00	36.59	97	37.25	99	75-125	2	0-20	
Selenium	ND	25.00	20.66	83	21.05	84	75-125	2	0-20	
Silver	ND	12.50	12.98	104	13.30	106	75-125	2	0-20	
Thallium	ND	25.00	19.00	76	19.76	79	75-125	4	0-20	
Vanadium	33.51	25.00	56.79	93	60.09	106	75-125	6	0-20	

101

97.42

105

75-125

0-20

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-0199 EPA 7471A Total EPA 7471A

06/03/14

Project: Former Pechiney Cast Plate / 0106270030

Page 3 of 4

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
#1090	Sample		Solid	Mer	cury 05	06/04/14	06/04/14	17:24	140604S01	
#1090	Matrix Spike		Solid	Mer	cury 05	06/04/14	06/04/14	17:27	140604S01	
#1090	Matrix Spike	Duplicate	Solid	Mer	cury 05	06/04/14	06/04/14	17:29	140604S01	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.8350	1.100	132	1.018	122	71-137	8	0-14	

Page 4 of 4

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure Date Received: 06/03/14
121 Innovation Drive, Suite 200 Work Order: 14-06-0199
Irvine, CA 92617-3094 Preparation: EPA 3540C
Method: EPA 8082

Project: Former Pechiney Cast Plate / 0106270030

Quality Control Sample ID	Туре		Matrix	Ir	nstrument	Date Prepared	Date Ana	yzed	MS/MSD Bat	tch Number
886-V-O-CS-001	Sample		Concret	te G	GC 31	06/03/14	06/05/14	15:45	140603S19	
886-V-O-CS-001	Matrix Spike		Concret	te G	GC 31	06/03/14	06/05/14	19:54	140603S19	
886-V-O-CS-001	Matrix Spike	Duplicate	Concret	te G	GC 31	06/03/14	06/05/14	20:13	140603S19	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Aroclor-1016	ND	100.0	117.0	117	136.9	137	50-135	16	0-25	3
Aroclor-1260	ND	100.0	115.1	115	166.7	167	50-135	37	0-25	3,4

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-0199 EPA 3550B EPA 8015B (M)

06/03/14

Project: Former Pechiney Cast Plate / 0106270030

Page 1 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-490-937	LCS	Solid	GC 48	06/03/14	06/04/14 03:01	140603B12
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
TPH as Diesel		400.0	375.3	94	75-12	3

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

14-06-0199 EPA 3050B EPA 6010B

06/03/14

Project: Former Pechiney Cast Plate / 0106270030

Page 2 of 4

Quality Control Sample ID	Type	Matrix	Instrumen	t Date Prepar	ed Date Analyzed	LCS Batch Number
097-01-002-18446	LCS	Solid	ICP 7300	06/03/14	06/04/14 12:21	140603L05
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL M	E CL Qualifiers
Antimony		25.00	25.08	100	80-120 73	3-127
Arsenic		25.00	23.89	96	80-120 73	3-127
Barium		25.00	25.52	102	80-120 73	3-127
Beryllium		25.00	24.20	97	80-120 73	3-127
Cadmium		25.00	25.59	102	80-120 73	3-127
Chromium		25.00	25.63	103	80-120 73	3-127
Cobalt		25.00	27.65	111	80-120 73	3-127
Copper		25.00	25.08	100	80-120 73	3-127
Lead		25.00	25.53	102	80-120 73	3-127
Molybdenum		25.00	25.21	101	80-120 73	3-127
Nickel		25.00	26.83	107	80-120 73	3-127
Selenium		25.00	21.97	88	80-120 73	3-127
Silver		12.50	12.66	101	80-120 73	3-127
Thallium		25.00	26.21	105	80-120 73	3-127
Vanadium		25.00	24.70	99	80-120 73	3-127
Zinc		25.00	25.40	102	80-120 73	3-127

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-0199 EPA 7471A Total EPA 7471A

06/03/14

Project: Former Pechiney Cast Plate / 0106270030

Page 3 of 4

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-285	LCS	Solid	Mercury 05	06/04/14	06/04/14 17:22	140604L01
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec.	. CL Qualifiers
Mercury		0.8350	0.9563	115	85-12 ²	1

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/03/14 14-06-0199 EPA 3540C EPA 8082

Project: Former Pechiney Cast Plate / 0106270030

Page 4 of 4

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-02-003-261	LCS	Solid	GC 31	06/03/14	06/05/14 15:26	140603L19
<u>Parameter</u>		Spike Added	Conc. Recove	ered LCS %R	tec. %Rec	. CL Qualifiers
Aroclor-1016		100.0	99.34	99	50-13	5
Aroclor-1260		100.0	106.4	106	60-130	0

Sample Analysis Summary Report

Work Order: 14-06-0199				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6010B	EPA 3050B	469	ICP 7300	1
EPA 7471A	EPA 7471A Total	915	Mercury 05	1
EPA 8015B (M)	EPA 3550B	847	GC 48	1
EPA 8082	EPA 3540C	842	GC 31	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

SG

Glossary of Terms and Qualifiers

Work Order: 14-06-0199 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

X % Recovery and/or RPD out-of-range.

Z Analyte presence was not confirmed by second column or GC/MS analysis.

The sample extract was subjected to Silica Gel treatment prior to analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

PROJECT NUMBER: 010 1927 10 1030	MARGRATORY SAME PACE	CLIENT INFORMATION: AMEC	REPORTING REQUIREMENTS:	PAGE OF	
RESULTS TO: LINGE CONIAN	SS:				-
X					3) 3) 3)
SAMPLE SHIPMENT METHOD:	LARGRATORY SONTACK OWO	aK	GEOTRACKER REQUIRED	YES	ON
	5/	ANAIVSES	SITE SPECIFIC GLOBAL ID NO.		
HAMPELLY CHAMMALORE	S. S	J			
WOO W	108 EE 808				
DATE TIME SAMPLE			CONTAINER SOIL (S), V Vapor (V) Fleed Soil (S), V Vapor (V)	Cooled MS/MSD No. of Co	ADDITIONAL COMMENTS
6-3-14 0725 886-V-0-CS-00	×		402 glass jar 0	X COV	concrete
02730	20			^ ×	
			0		
19-AIT-872 E80	1 X 580-57-5/0		0	, 	\rightarrow
	XXX		and and	 ×	
10014 41001	X		S	<u>~</u>	
2601# 9E60	× × ×		2	× :	
6933 #1093	× × ×		\$	×	
7601# 1560	× ×		S	×	
5.60 1 # S660	×××		V	<u> </u>	
9601# LE60	××			/ X	
Lb01# 0hb0	× × ×		8	×	
8601#10660	×			×	
					THE PROPERTY OF THE PROPERTY O
RELINOUISHED BY: DA	DATE TIME RECEIVED BY:	DATE TIME TOTAL NU	TOTAL NUMBER OF CONTAINERS:	(8)	CONTRACTOR
Marin	B	(%) (%)	SAMPLING COMMENTS:		
AMEC	*	1/2 1/2 1/2			
SIGNATURE 6/2	30 SIGNATURE	6/2/ 12			
COMPANY TELL		ŽŽ			
SIGNATURE OF THE STATE OF THE S	SIGNATURE:	3081 /2/	121 Innovation Drive, Suite 200 Irvine, California 92617-3094		
くんころう	300	1,1,1			

eturn to Contents

Calscience

WORK ORDER #: **14-06-** □ □

SAMPLE RECEIPT FORM Cooler _____ of ____

		- (
	Δc	126	1 A A	
DATE.	un	1011	/ / 44	
UMIL.	$-\mathbf{U}\mathbf{U}$	1 - (2 1	, ,	

CLIENT: AMEC DATE: _	06/03/	14
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozen except set Temperature °C - 0.3 °C (CF) = S_ °C	diment/tissue) □ Sample	Control Control
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampli☐ Received at ambient temperature, placed on ice for transport by Courier.	ng.	. A
Ambient Temperature: Air Filter	Checked by:	828
CUSTODY SEALS INTACT: Cooler	Checked by:	828 BOZ
SAMPLE CONDITION: Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples		
COC document(s) received complete		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.		
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.		
Sampler's name indicated on COC		
Sample container label(s) consistent with COC		
Sample container(s) intact and good condition		
Proper containers and sufficient volume for analyses requested		
Analyses received within holding time		
Aqueous samples received within 15-minute holding time		
□ pH □ Residual Chlorine □ Dissolved Sulfides □ Dissolved Oxygen □		ø,
Proper preservation noted on COC or sample container		Z
☐ Unpreserved vials received for Volatiles analysis		7
Volatile analysis container(s) free of headspace □		4 0
Tedlar bag(s) free of condensation □ CONTAINER TYPE:		Ø
Solid: ☑4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores® □Terra	Cores® □	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB [
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB	□1PB na □5	00PB
□250PB □250PB n □125PB □125PB znna □100PJ □100PJ na ₂ □ □_		
Air: □Tedlar [®] □Canister Other: □ Trip Blank Lot#: Labeled	keviewed by: _	

Supplemental Report 1

Additional requested analyses are reported as a stand-alone report.

CALSCIENCE

WORK ORDER NUMBER: 14-06-0199

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate / 0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

ResultLink >

Email your PM >

Approved for release on 06/09/2014 by:

Stephen Nowak Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	Former Pechiney Cast Plate / 0106270030
----------------------	---

Work Order Number: 14-06-0199

1	Work Order Narrative	3
2	Sample Summary	4
3	Client Sample Data. 3.1 EPA 8015B (M) C6-C44 (Solid). 3.2 EPA 6010B/7471A CAC Title 22 Metals (Solid). 3.3 EPA 7471A Mercury (Solid).	5 5 7 9
4	Quality Control Sample Data.4.1 MS/MSD.4.2 LCS/LCSD.	10 10 13
5	Sample Analysis Summary	16
6	Glossary of Terms and Qualifiers	17
7	Chain of Custody/Sample Receipt Form	18

Work Order Narrative

Work Order: 14-06-0199 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 06/03/14. They were assigned to Work Order 14-06-0199.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: Project Name:

14-06-0199 Former Pechiney Cast Plate / 0106270030

PO Number:

Date/Time

06/03/14 18:00

Received:

Number of 13

Containers:

Attn: Linda Conlan

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
#1098	14-06-0199-13	06/03/14 09:39	1	Solid

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-0199 EPA 3550B

06/03/14

Units:

EPA 8015B (M) mg/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 1 of 2

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1098		14-06-0199-13-A	06/03/14 09:39	Solid	GC 48	06/06/14	06/07/14 00:42	140606B12B
Comment(s):	- The total concentr	ation includes individual car	bon range cond	centrations (esti	imated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
C6			ND	5.0		1.00		
C7			ND	5.0		1.00		
C8			ND	5.0		1.00		
C9-C10			ND	5.0		1.00		
C11-C12			ND	5.0		1.00		
C13-C14			ND	5.0		1.00		
C15-C16			ND	5.0		1.00		
C17-C18			5.7	5.0		1.00		
C19-C20			12	5.0		1.00		
C21-C22			13	5.0		1.00		
C23-C24			22	5.0		1.00		
C25-C28			31	5.0		1.00		
C29-C32			53	5.0		1.00		
C33-C36			44	5.0		1.00		
C37-C40			46	5.0		1.00		
C41-C44			28	5.0		1.00		
C6-C44 Total			260	5.0		1.00		
Surrogate			Rec. (%)	<u>Con</u>	trol Limits	Qualifiers		
n-Octacosane			89	61-1	45			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate / 0106270030

Date Received:
Work Order:
Preparation:
Method:

14-06-0199 EPA 3550B EPA 8015B (M)

06/03/14

Units: mg/kg
Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-946	N/A	Solid	GC 48	06/06/14	06/06/14 19:10	140606B12B
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		80	61-	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/03/14 14-06-0199 EPA 3050B EPA 6010B

Units:

mg/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1098	14-06-0199-13-A	06/03/14 09:39	Solid	ICP 7300	06/06/14	06/09/14 12:48	140606L04
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Antimony		ND	C).750	1.00		
Arsenic		1.45	C).750	1.00		
Barium		120	C).500	1.00		
Beryllium		0.367	C).250	1.00		
Cadmium		ND	C).500	1.00		
Chromium		18.3	C	0.250	1.00		
Cobalt		10.0	C	0.250	1.00		
Copper		51.0	C	0.500	1.00		
Lead		20.0	C	0.500	1.00		
Molybdenum		ND	C	0.250	1.00		
Nickel		12.3	C	0.250	1.00		
Selenium		ND	C).750	1.00		
Silver		ND	C	0.250	1.00		
Thallium		ND	C	0.750	1.00		
Vanadium		37.3	C	0.250	1.00		
Zinc		74.4	1	.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

06/03/14 14-06-0199 **EPA 3050B EPA 6010B**

Units:

mg/kg Page 2 of 2

Project: Former Pechiney Cast Plate / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-18453	N/A	Solid	ICP 7300	06/06/14	06/09/14 12:45	140606L04
Parameter	·	Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Antimony		ND	C).750	1.00		
Arsenic		ND	C).750	1.00		
Barium		ND	C).500	1.00		
Beryllium		ND	C).250	1.00		
Cadmium		ND	C).500	1.00		
Chromium		ND	C	0.250	1.00		
Cobalt		ND	C).250	1.00		
Copper		ND	C).500	1.00		
Lead		ND	C	0.500	1.00		
Molybdenum		ND	C).250	1.00		
Nickel		ND	C).250	1.00		
Selenium		ND	C).750	1.00		
Silver		ND	C).250	1.00		
Thallium		ND	C).750	1.00		
Vanadium		ND	C	0.250	1.00		
Zinc		ND	1	.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

14-06-0199 EPA 7471A Total EPA 7471A

06/03/14

Units:

mg/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1098	14-06-0199-13-A	06/03/14 09:39	Solid	Mercury 05	06/09/14	06/09/14 14:05	140609L01
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Mercury		0.278	(0.0833	1.00		
Method Blank	099-16-272-292	N/A	Solid	Mercury 05	06/09/14	06/09/14 14:01	140609L01
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	alifiers
Mercury		ND	(0.0833	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Page 1 of 3

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure Date Received: 06/03/14
121 Innovation Drive, Suite 200 Work Order: 14-06-0199
Irvine, CA 92617-3094 Preparation: EPA 3550B
Method: EPA 8015B (M)

Project: Former Pechiney Cast Plate / 0106270030

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
14-06-0413-6	Sample		Solid	GC	48	06/06/14	06/06/14	20:13	140606S12	
14-06-0413-6	Matrix Spike		Solid	GC	48	06/06/14	06/06/14	19:42	140606S12	
14-06-0413-6	Matrix Spike	Duplicate	Solid	GC	48	06/06/14	06/06/14	19:57	140606S12	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	ND	400.0	306.8	77	304.8	76	64-130	1	0-15	

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/03/14 14-06-0199 EPA 3050B EPA 6010B

Project: Former Pechiney Cast Plate / 0106270030

Page 2 of 3

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepare	d Date Ana	lyzed	MS/MSD Ba	tch Number
#1098	Sample		Solid	ICP	7300	06/06/14	06/09/14	12:48	140606S04	
#1098	Matrix Spike		Solid	ICP	7300	06/06/14	06/09/14	12:49	140606S04	
#1098	Matrix Spike	Duplicate	Solid	ICP	7300	06/06/14	06/09/14	12:50	140606S04	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	15.52	62	15.59	62	50-115	0	0-20	
Arsenic	1.451	25.00	28.11	107	29.23	111	75-125	4	0-20	
Barium	120.4	25.00	140.9	4X	141.3	4X	75-125	4X	0-20	Q
Beryllium	0.3673	25.00	27.65	109	27.75	110	75-125	0	0-20	
Cadmium	ND	25.00	26.00	104	26.01	104	75-125	0	0-20	
Chromium	18.28	25.00	44.25	104	43.47	101	75-125	2	0-20	
Cobalt	10.03	25.00	36.04	104	36.15	104	75-125	0	0-20	
Copper	51.03	25.00	72.53	86	72.51	86	75-125	0	0-20	
Lead	20.03	25.00	42.58	90	44.48	98	75-125	4	0-20	
Molybdenum	ND	25.00	25.83	103	26.21	105	75-125	1	0-20	
Nickel	12.28	25.00	37.74	102	37.31	100	75-125	1	0-20	
Selenium	ND	25.00	21.61	86	21.41	86	75-125	1	0-20	
Silver	ND	12.50	13.52	108	13.70	110	75-125	1	0-20	
Thallium	ND	25.00	19.35	77	19.72	79	75-125	2	0-20	
Vanadium	37.34	25.00	62.97	103	61.76	98	75-125	2	0-20	
Zinc	74.38	25.00	101.3	108	94.97	82	75-125	6	0-20	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-0199 EPA 7471A Total EPA 7471A

06/03/14

Project: Former Pechiney Cast Plate / 0106270030

Page 3 of 3

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
#1098	Sample		Solid	Mer	cury 05	06/09/14	06/09/14	14:05	140609S01	
#1098	Matrix Spike		Solid	Mer	cury 05	06/09/14	06/09/14	14:07	140609S01	
#1098	Matrix Spike	Duplicate	Solid	Mer	cury 05	06/09/14	06/09/14	14:10	140609S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	0.2777	0.8350	0.9775	84	0.9260	78	71-137	5	0-14	

Quality Control - LCS

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-0199 EPA 3550B EPA 8015B (M)

06/03/14

Project: Former Pechiney Cast Plate / 0106270030

Page 1 of 3

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-490-946	LCS	Solid	GC 48	06/06/14	06/06/14 19:26	140606B12B
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
TPH as Diesel		400.0	341.7	85	75-123	3

Quality Control - LCS

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

06/03/14 14-06-0199 EPA 3050B EPA 6010B

Project: Former Pechiney Cast Plate / 0106270030

Dogo	2	۰ŧ	2	
Page	_	OI	J	

Quality Control Sample ID	Type	Matrix	Instrumen	t Date Prepa	red Date Anal	yzed LCS Batch	Number
097-01-002-18453	LCS	Solid	ICP 7300	06/06/14	06/09/14 1	12:46 140606L04	
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		25.00	28.34	113	80-120	73-127	
Arsenic		25.00	25.68	103	80-120	73-127	
Barium		25.00	26.85	107	80-120	73-127	
Beryllium		25.00	26.03	104	80-120	73-127	
Cadmium		25.00	26.94	108	80-120	73-127	
Chromium		25.00	26.94	108	80-120	73-127	
Cobalt		25.00	28.74	115	80-120	73-127	
Copper		25.00	26.19	105	80-120	73-127	
Lead		25.00	26.97	108	80-120	73-127	
Molybdenum		25.00	26.23	105	80-120	73-127	
Nickel		25.00	28.03	112	80-120	73-127	
Selenium		25.00	23.10	92	80-120	73-127	
Silver		12.50	13.23	106	80-120	73-127	
Thallium		25.00	27.59	110	80-120	73-127	
Vanadium		25.00	25.99	104	80-120	73-127	
Zinc		25.00	26.86	107	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-0199 EPA 7471A Total EPA 7471A

Page 3 of 3

06/03/14

Project: Former Pechiney Cast Plate / 0106270030

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-292	LCS	Solid	Mercury 05	06/09/14	06/09/14 14:03	140609L01
Parameter		Spike Added	Conc. Recover	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.8350	0.9054	108	85-12°	1

RPD: Relative Percent Difference. CL: Control Limits

Sample Analysis Summary Report

Work Order: 14-06-0199				Page 1 of 1		
<u>Method</u>	Extraction	Chemist ID	Instrument	Analytical Location		
EPA 6010B	EPA 3050B	469	ICP 7300	1		
EPA 7471A	EPA 7471A Total	915	Mercury 05	1		
EPA 8015B (M)	EPA 3550B	847	GC 48	1		

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 14-06-0199 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- Q Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Contents

Stephen Nowak

From: Holland, Kim [Kim.Holland@amec.com]

Sent: Friday, June 06, 2014 4:31 PM

To: Stephen Nowak

Subject: RE: Former Pechiney Cast Plate / 0106270030 / CEL 14-06-0199

Please add EPA 8015 and Title 22 metals for sample #1098 on a 24 hour TAT. Thanks,

Kim

From: Stephen Nowak [mailto:StephenNowak@eurofinsUS.com]

Sent: Friday, June 06, 2014 3:01 PM

To: Costamagna, Daniel G; Holland, Kim; Conlan, Linda; Huang, Stephen; Lee, Zhur

Subject: Former Pechiney Cast Plate / 0106270030 / CEL 14-06-0199

Report, EDD, and Invoice are attached.

Stephen Nowak Project Manager

Eurofins Calscience, Inc. 7440 Lincoln Way GARDEN GROVE, CA 92841 USA

Phone: +1 714 895 5494 Mobile: +1 714 904 5230

Email: StephenNowak@EurofinsUS.com

Website: www.calscience.com

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon this information by persons or entities other than the intended recipient is prohibited. If you receive this in error, please contact the sender and delete the material from any computer. Email transmission cannot be guaranteed to be secure or error free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete. The sender therefore is in no way liable for any errors or omissions in the content of this message which may arise as a result of email transmission. If verification is required, please request a hard copy. We take reasonable precautions to ensure our emails are free from viruses. You need, however, to verify that this email and any attachments are free of viruses, as we can take no responsibility for any computer viruses, which might be transferred by way of this email. We may monitor all email communication through our networks. If you contact us by email, we may store your name and address to facilitate communication.

The information contained in this e-mail is intended only for the individual or entity to whom it is addressed. Its contents (including any attachments) may contain confidential and/or privileged information. If you are not an intended recipient you must not use, disclose, disseminate, copy or print its contents. If you receive this e-mail in error, please notify the sender by reply e-mail and delete and destroy the message.

Click here to report this email as spam.

됩	O N	E-Cusi	CHAIN-OF-CUSTODY RECORD						1,1,1			. • •		2				^ 1	
PRO.	PROJECT NAME: PROJECT NUMBER: () ()	NAME: 17	oz7003c	rechir	NEX LABO	A CAST ABORAIORY SANE	Flate	FAC.	CLIENT INFORMATION:	- 1	AMEC	DA REPC	DATE: 6 - 5 - 1 REPORTING REQUIREMENTS:	O = L		PAGE)	
RESI	RESULTS TO: UN da	inda	Conjar	7	LABO	LABORATORY ADDRESS	RESS:	oniversity of the second order o										M A C A 100	
ו מא	AROUND	Z Z	天		S.	To And Cale to						and the second s					3	7 7 7	
C S		SAMPLE SHIPMEN METHOD:	2		A S	RATORY PHO	LABORATORY PHONE NUMBER:	7				. GEO.	GEOTRACKER REQUIRED	UIRED		***************************************	YES	ON	
((1	ĺ		5/	Z	ANAIVEE	0	-	***************************************	SITE	SITE SPECIFIC GLOBAL ID NO	DBAL ID NO.		-			
**	AND	SAMPLERS A	ACHEMINAL OF	A Sept	4	2 VAPN	Ē		2				<u>(A</u>	(O) 19	e				
1	P				808	108 EE							V) jetsV	ritO 10 ,	qvT əvi		ntainera		
	DATE	TIME	SAMPLE	SAMPLE NUMBER	E6₩	भग <u>्</u> य						CONTAINER TYPE AND SIZE		Soil (S), V Vapor (V) Filtered	Preservat	Cooled MS/MSD	No. of Co	ADDITIONAL COMMENTS	
20	H-6-9	0725	3-0-1-0-C	-0-cs-001	×							4020 lass	iar			×)	concrete	
		0570	886-II-0-CS-002	CS-007	×							1		0		×	_		
		0745		15-CS-03	λ h									0		.×			
		6752	1293 TEA-	P15-55-035	35 X									0		×		\rightarrow	
		0932		7	X	××							3	S		×			
		093 H			×	×								S		×			
		0936	#1092		×	×							,	2		×			
		6933			×	×								S		×	_		
		1260	7501#		×	×								S		×			
		0935	#16		×	X ×								S		×			
		1660	#1096		×	×								S		×	1		
		0440	601#		×	×								S		×			
~	\rightarrow	0830	8601#		×							>		S		$\frac{1}{2}$			
!																200000000000000000000000000000000000000		A THE TAXABLE CONTRACTOR CONTRACT	1
		RELINQUISHED BY:		DATE TIME		RECEIVED BY) BY:	<u>Q</u> 	DATE T	TIME	L I FOTAL NUM	TOTAL NUMBER OF CONTAINERS:	.S:				(2)	(
13	SIGNATURE:	BACIL	irely			SIGNATUBE	1	-9			SAMPLING	SAMPLING COMMENTS:							[]
	COMPANY:	A A	Jomins Ky 1	10/2		PRINTEDINA	E TOS	7	<u> </u>	 									 -
S \	SIGNATURE:	VIEW VIEW VIEW VIEW VIEW VIEW VIEW VIEW		6/14		SIGNATUREL	Z WEX	Q Q											
/IE 48	PRINTED NAME: COMPANY	SE TO THE SE	03/6	10/2×		PRINTED NAME:				R									age 19
is ES	SIGNATURE PRINTED NAME: COMPANY:	NET	ALVER CO.	08) M/2/	SIG PRI	SIGNATURE: PRINTED NAME: COMPANY:	1 / 3/15	100	1/4	(800)	Tel 94	121 Innovation Drive, Suite 200 Irvine, California 92617-3094 Tel 949.642.0245 Fax 949.642.	Drive, Suite 200 a 92617-3094 Fax 949.642.4474	200)94 42.447	4			amec	UI ZU
5	WIFF T.	3			;	Wit Cux 1.	700				5				-				— ,

eturn to Contents

Calscience

WORK ORDER #: 14-06-

SAMPLE RECEIPT FORM

Cooler <u>l</u> of <u>/</u>

CLIENT: AMEC DATE: _	06/03/	14
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozen except second remperature	☐ Sample	
Ambient Temperature: Air Filter	Checked by:	828
CUSTODY SEALS INTACT: Cooler	Checked by: Checked by:	828 862
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples. COC document(s) received complete. Collection date/time, matrix, and/or # of containers logged in based on sample labels.	No □	N/A
□ No analysis requested. □ Not relinquished. □ No date/time relinquished. Sampler's name indicated on COC		
Aqueous samples received within 15-minute holding time □ pH □ Residual Chlorine □ Dissolved Sulfides □ Dissolved Oxygen □ Proper preservation noted on COC or sample container □ □ Unpreserved vials received for Volatiles analysis		A A
Volatile analysis container(s) free of headspace		Ø
Solid:	□1AGBna₂ □ □1PBna □5 □ □ □ /Checked by: □	862
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope R Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ +NaOH f: Filtered	Reviewed by: _ Scanned by:_	

CALSCIENCE

WORK ORDER NUMBER: 14-06-0297

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate Facility /

0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

ResultLink)

Email your PM >

Approved for release on 06/09/2014 by: Stephen Nowak

Project Manager

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Former Pechiney Cast Plate Facility / 0106270030

Work Order Number: 14-06-0297

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data	14 14 32 50 53
5	Quality Control Sample Data.5.1 MS/MSD.5.2 LCS/LCSD.	62 62 66
6	Sample Analysis Summary	70
7	Glossary of Terms and Qualifiers	71
8	Chain of Custody/Sample Receipt Form	72

Work Order Narrative

Work Order: 14-06-0297 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 06/04/14. They were assigned to Work Order 14-06-0297.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0297

Project Name: Former Pechiney Cast Plate Facility /

0106270030

PO Number:

Date/Time 06/04/14 16:55

Received:

17 Number of Containers:

Attn: Linda Conlan

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
#1099	14-06-0297-1	06/04/14 10:08	1	Solid
#1100	14-06-0297-2	06/04/14 10:09	1	Solid
#1101	14-06-0297-3	06/04/14 10:10	1	Solid
#1102	14-06-0297-4	06/04/14 10:11	1	Solid
#1103	14-06-0297-5	06/04/14 10:12	1	Solid
#1104	14-06-0297-6	06/04/14 10:13	1	Solid
#1105	14-06-0297-7	06/04/14 10:14	1	Solid
#1106	14-06-0297-8	06/04/14 10:15	1	Solid
#1107	14-06-0297-9	06/04/14 10:16	1	Solid
#1108	14-06-0297-10	06/04/14 10:17	1	Solid
#1109	14-06-0297-11	06/04/14 10:18	1	Solid
#1110	14-06-0297-12	06/04/14 10:16	1	Solid
#1111	14-06-0297-13	06/04/14 10:12	1	Solid
#1112	14-06-0297-14	06/04/14 10:11	1	Solid
#1113	14-06-0297-15	06/04/14 10:09	1	Solid
#1114	14-06-0297-16	06/04/14 10:10	1	Solid
#1115	14-06-0297-17	06/04/14 10:24	1	Solid

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0297

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 06/04/14

Attn: Linda Conlan Page 1 of 9

Client SampleID						
Analyte	Result	<u>Qualifiers</u>	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1099 (14-06-0297-1)						
Arsenic	2.76		0.750	mg/kg	EPA 6010B	EPA 3050B
Barium	150		0.500	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.388		0.250	mg/kg	EPA 6010B	EPA 3050B
Chromium	18.5		0.250	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.9		0.250	mg/kg	EPA 6010B	EPA 3050B
Copper	29.8		0.500	mg/kg	EPA 6010B	EPA 3050B
Lead	59.7		0.500	mg/kg	EPA 6010B	EPA 3050B
Nickel	17.4		0.250	mg/kg	EPA 6010B	EPA 3050B
Vanadium	36.6		0.250	mg/kg	EPA 6010B	EPA 3050B
Zinc	81.9		1.00	mg/kg	EPA 6010B	EPA 3050B
C19-C20	16		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C21-C22	24		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C23-C24	37		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	66		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	97		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	56		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	46		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C41-C44	18		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	360		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
#1100 (14-06-0297-2)						
Arsenic	6.37		0.758	mg/kg	EPA 6010B	EPA 3050B
Barium	146		0.505	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.382		0.253	mg/kg	EPA 6010B	EPA 3050B
Chromium	19.9		0.253	mg/kg	EPA 6010B	EPA 3050B
Cobalt	13.2		0.253	mg/kg	EPA 6010B	EPA 3050B
Copper	63.7		0.505	mg/kg	EPA 6010B	EPA 3050B
Lead	37.3		0.505	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.311		0.253	mg/kg	EPA 6010B	EPA 3050B
Nickel	44.6		0.253	mg/kg	EPA 6010B	EPA 3050B
Vanadium	35.1		0.253	mg/kg	EPA 6010B	EPA 3050B
Zinc	123		1.01	mg/kg	EPA 6010B	EPA 3050B
C23-C24	5.4		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	11		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	13		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	7.8		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	7.3		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	53		5.0	mg/kg	EPA 8015B (M)	EPA 3550B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0297

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 06/04/14

Attn: Linda Conlan Page 2 of 9

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
#1101 (14-06-0297-3)						
Arsenic	1.14		0.746	mg/kg	EPA 6010B	EPA 3050B
Barium	166		0.498	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.449		0.249	mg/kg	EPA 6010B	EPA 3050B
Chromium	20.5		0.249	mg/kg	EPA 6010B	EPA 3050B
Cobalt	13.8		0.249	mg/kg	EPA 6010B	EPA 3050B
Copper	21.4		0.498	mg/kg	EPA 6010B	EPA 3050B
Lead	2.57		0.498	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.278		0.249	mg/kg	EPA 6010B	EPA 3050B
Nickel	15.9		0.249	mg/kg	EPA 6010B	EPA 3050B
Vanadium	41.5		0.249	mg/kg	EPA 6010B	EPA 3050B
Zinc	65.8		0.995	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.0993		0.0847	mg/kg	EPA 7471A	EPA 7471A Total
C19-C20	9.4		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C21-C22	7.9		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C23-C24	8.8		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	10		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	7.4		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	54		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
#1102 (14-06-0297-4)						
Arsenic	1.50		0.725	mg/kg	EPA 6010B	EPA 3050B
Barium	157		0.483	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.439		0.242	mg/kg	EPA 6010B	EPA 3050B
Chromium	19.4		0.242	mg/kg	EPA 6010B	EPA 3050B
Cobalt	13.3		0.242	mg/kg	EPA 6010B	EPA 3050B
Copper	19.5		0.483	mg/kg	EPA 6010B	EPA 3050B
Lead	1.72		0.483	mg/kg	EPA 6010B	EPA 3050B
Nickel	14.7		0.242	mg/kg	EPA 6010B	EPA 3050B
Vanadium	40.1		0.242	mg/kg	EPA 6010B	EPA 3050B
Zinc	63.2		0.966	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0297

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

06/04/14 Received:

Attn: Linda Conlan Page 3 of 9

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1103 (14-06-0297-5)						
Arsenic	3.10		0.728	mg/kg	EPA 6010B	EPA 3050B
Barium	117		0.485	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.263		0.243	mg/kg	EPA 6010B	EPA 3050B
Cadmium	0.534		0.485	mg/kg	EPA 6010B	EPA 3050B
Chromium	20.5		0.243	mg/kg	EPA 6010B	EPA 3050B
Cobalt	8.77		0.243	mg/kg	EPA 6010B	EPA 3050B
Copper	75.2		0.485	mg/kg	EPA 6010B	EPA 3050B
Lead	94.6		0.485	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.371		0.243	mg/kg	EPA 6010B	EPA 3050B
Nickel	42.8		0.243	mg/kg	EPA 6010B	EPA 3050B
Vanadium	27.9		0.243	mg/kg	EPA 6010B	EPA 3050B
Zinc	271		0.971	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.310		0.0806	mg/kg	EPA 7471A	EPA 7471A Total
C23-C24	26		25	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	49		25	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	87		25	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	72		25	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	59		25	mg/kg	EPA 8015B (M)	EPA 3550B
C41-C44	28		25	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	360		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
Aroclor-1248	560		51	ug/kg	EPA 8082	EPA 3540C
Aroclor-1260	100		51	ug/kg	EPA 8082	EPA 3540C

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0297

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

06/04/14 Received:

Attn: Linda Conlan Page 4 of 9

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#4404 (44 00 000 7 0)						
#1104 (14-06-0297-6)						
Arsenic	0.981		0.739	mg/kg	EPA 6010B	EPA 3050B
Barium	107		0.493	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.317		0.246	mg/kg	EPA 6010B	EPA 3050B
Cadmium	2.00		0.493	mg/kg	EPA 6010B	EPA 3050B
Chromium	20.2		0.246	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.2		0.246	mg/kg	EPA 6010B	EPA 3050B
Copper	55.0		0.493	mg/kg	EPA 6010B	EPA 3050B
Lead	30.8		0.493	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	1.26		0.246	mg/kg	EPA 6010B	EPA 3050B
Nickel	15.1		0.246	mg/kg	EPA 6010B	EPA 3050B
Vanadium	30.1		0.246	mg/kg	EPA 6010B	EPA 3050B
Zinc	334		0.985	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.185		0.0820	mg/kg	EPA 7471A	EPA 7471A Total
C17-C18	5.6		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C19-C20	13		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C21-C22	28		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C23-C24	36		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	51		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	50		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	25		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	18		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	230		5.0	mg/kg	EPA 8015B (M)	EPA 3550B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0297

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 06/04/14

Attn: Linda Conlan Page 5 of 9

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
#1105 (14-06-0297-7)						
Arsenic	1.53		0.750	mg/kg	EPA 6010B	EPA 3050B
Barium	135		0.500	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.391		0.250	mg/kg	EPA 6010B	EPA 3050B
Chromium	17.6		0.250	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.7		0.250	mg/kg	EPA 6010B	EPA 3050B
Copper	19.1		0.500	mg/kg	EPA 6010B	EPA 3050B
Lead	4.64		0.500	mg/kg	EPA 6010B	EPA 3050B
Nickel	13.7		0.250	mg/kg	EPA 6010B	EPA 3050B
Vanadium	35.6		0.250	mg/kg	EPA 6010B	EPA 3050B
Zinc	69.1		1.00	mg/kg	EPA 6010B	EPA 3050B
C15-C16	10		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C17-C18	26		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C19-C20	39		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C21-C22	42		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C23-C24	29		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	44		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	35		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	14		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	10		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	260		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
#1106 (14-06-0297-8)						
Arsenic	0.817		0.732	mg/kg	EPA 6010B	EPA 3050B
Barium	125		0.488	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.392		0.244	mg/kg	EPA 6010B	EPA 3050B
Chromium	16.6		0.244	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.3		0.244	mg/kg	EPA 6010B	EPA 3050B
Copper	16.1		0.488	mg/kg	EPA 6010B	EPA 3050B
Lead	1.60		0.488	mg/kg	EPA 6010B	EPA 3050B
Nickel	12.1		0.244	mg/kg	EPA 6010B	EPA 3050B
Vanadium	35.5		0.244	mg/kg	EPA 6010B	EPA 3050B
Zinc	52.8		0.976	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0297

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

06/04/14 Received:

Attn: Linda Conlan Page 6 of 9

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1107 (14-06-0297-9)						
Arsenic	0.925		0.735	ma/ka	EPA 6010B	EPA 3050B
				mg/kg		
Barium	132		0.490	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.388		0.245	mg/kg	EPA 6010B	EPA 3050B
Chromium	17.4		0.245	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.7		0.245	mg/kg	EPA 6010B	EPA 3050B
Copper	16.5		0.490	mg/kg	EPA 6010B	EPA 3050B
Lead	1.68		0.490	mg/kg	EPA 6010B	EPA 3050B
Nickel	12.7		0.245	mg/kg	EPA 6010B	EPA 3050B
Vanadium	37.5		0.245	mg/kg	EPA 6010B	EPA 3050B
Zinc	54.3		0.980	mg/kg	EPA 6010B	EPA 3050B
#1108 (14-06-0297-10)						
Arsenic	1.21		0.732	mg/kg	EPA 6010B	EPA 3050B
Barium	155		0.488	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.371		0.244	mg/kg	EPA 6010B	EPA 3050B
Chromium	16.6		0.244	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.5		0.244	mg/kg	EPA 6010B	EPA 3050B
Copper	23.0		0.488	mg/kg	EPA 6010B	EPA 3050B
Lead	10.6		0.488	mg/kg	EPA 6010B	EPA 3050B
Nickel	13.7		0.244	mg/kg	EPA 6010B	EPA 3050B
Vanadium	34.8		0.244	mg/kg	EPA 6010B	EPA 3050B
Zinc	110		0.976	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.342		0.0794	mg/kg	EPA 7471A	EPA 7471A Total

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0297

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

06/04/14 Received:

Attn: Linda Conlan Page 7 of 9

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1109 (14-06-0297-11)						
Arsenic	24.6		0.743	mg/kg	EPA 6010B	EPA 3050B
Barium	142		0.495	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.405		0.248	mg/kg	EPA 6010B	EPA 3050B
Chromium	22.1		0.248	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.8		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper	108		0.495	mg/kg	EPA 6010B	EPA 3050B
Lead	97.2		0.495	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.437		0.248	mg/kg	EPA 6010B	EPA 3050B
Nickel	18.3		0.248	mg/kg	EPA 6010B	EPA 3050B
Vanadium	32.9		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc	256		0.990	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.396		0.0820	mg/kg	EPA 7471A	EPA 7471A Total
C19-C20	7.1		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C21-C22	9.7		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C23-C24	17		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	32		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	66		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	48		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	40		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C41-C44	21		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	240		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
Aroclor-1260	730		51	ug/kg	EPA 8082	EPA 3540C
#1110 (14-06-0297-12)						
Arsenic	2.16		0.761	mg/kg	EPA 6010B	EPA 3050B
Barium	137		0.508	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.394		0.254	mg/kg	EPA 6010B	EPA 3050B
Chromium	18.0		0.254	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.0		0.254	mg/kg	EPA 6010B	EPA 3050B
Copper	24.1		0.508	mg/kg	EPA 6010B	EPA 3050B
Lead	8.11		0.508	mg/kg	EPA 6010B	EPA 3050B
Nickel	13.5		0.254	mg/kg	EPA 6010B	EPA 3050B
Vanadium	36.3		0.254	mg/kg	EPA 6010B	EPA 3050B
Zinc	69.6		1.02	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0297

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

06/04/14 Received:

Attn: Linda Conlan Page 8 of 9

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1111 (14-06-0297-13)						
Arsenic	1.54		0.735	mg/kg	EPA 6010B	EPA 3050B
Barium	138		0.490	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.387		0.245	mg/kg	EPA 6010B	EPA 3050B
Chromium	17.8		0.245	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.3		0.245	mg/kg	EPA 6010B	EPA 3050B
Copper	21.4		0.490	mg/kg	EPA 6010B	EPA 3050B
Lead	8.37		0.490	mg/kg	EPA 6010B	EPA 3050B
Nickel	14.0		0.245	mg/kg	EPA 6010B	EPA 3050B
Vanadium	36.6		0.245	mg/kg	EPA 6010B	EPA 3050B
Zinc	67.3		0.980	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.0803		0.0781	mg/kg	EPA 7471A	EPA 7471A Total
#1112 (14-06-0297-14)						
Arsenic	1.08		0.728	mg/kg	EPA 6010B	EPA 3050B
Barium	120		0.485	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.371		0.243	mg/kg	EPA 6010B	EPA 3050B
Chromium	15.6		0.243	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.7		0.243	mg/kg	EPA 6010B	EPA 3050B
Copper	16.3		0.485	mg/kg	EPA 6010B	EPA 3050B
Lead	2.65		0.485	mg/kg	EPA 6010B	EPA 3050B
Nickel	11.9		0.243	mg/kg	EPA 6010B	EPA 3050B
Vanadium	34.1		0.243	mg/kg	EPA 6010B	EPA 3050B
Zinc	54.3		0.971	mg/kg	EPA 6010B	EPA 3050B
#1113 (14-06-0297-15)						
Arsenic	1.32		0.743	mg/kg	EPA 6010B	EPA 3050B
Barium	165		0.495	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.423		0.248	mg/kg	EPA 6010B	EPA 3050B
Chromium	19.2		0.248	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.4		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper	63.7		0.495	mg/kg	EPA 6010B	EPA 3050B
Lead	1.76		0.495	mg/kg	EPA 6010B	EPA 3050B
Nickel	17.5		0.248	mg/kg	EPA 6010B	EPA 3050B
Vanadium	39.1		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc	62.5		0.990	mg/kg	EPA 6010B	EPA 3050B
C25-C28	6.1		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	5.7		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	23		5.0	mg/kg	EPA 8015B (M)	EPA 3550B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0297

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 06/04/14

Linda Conlan Page 9 of 9 Attn:

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1114 (14-06-0297-16)						
Arsenic	2.33		0.761	mg/kg	EPA 6010B	EPA 3050B
Barium	178		0.508	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.384		0.254	mg/kg	EPA 6010B	EPA 3050B
Chromium	20.9		0.254	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.9		0.254	mg/kg	EPA 6010B	EPA 3050B
Copper	108		0.508	mg/kg	EPA 6010B	EPA 3050B
Lead	98.5		0.508	mg/kg	EPA 6010B	EPA 3050B
Nickel	35.5		0.254	mg/kg	EPA 6010B	EPA 3050B
Vanadium	36.3		0.254	mg/kg	EPA 6010B	EPA 3050B
Zinc	113		1.02	mg/kg	EPA 6010B	EPA 3050B
C19-C20	51		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C21-C22	42		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C23-C24	41		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	66		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	93		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	61		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	44		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C41-C44	26		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	420		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
#1115 (14-06-0297-17)						
Arsenic	1.21		0.739	mg/kg	EPA 6010B	EPA 3050B
Barium	147		0.493	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.405		0.246	mg/kg	EPA 6010B	EPA 3050B
Chromium	18.3		0.246	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.6		0.246	mg/kg	EPA 6010B	EPA 3050B
Copper	18.9		0.493	mg/kg	EPA 6010B	EPA 3050B
Lead	2.40		0.493	mg/kg	EPA 6010B	EPA 3050B
Nickel	14.0		0.246	mg/kg	EPA 6010B	EPA 3050B
Vanadium	38.5		0.246	mg/kg	EPA 6010B	EPA 3050B
Zinc	61.7		0.985	mg/kg	EPA 6010B	EPA 3050B

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

06/04/14 14-06-0297 EPA 3550B EPA 8015B (M)

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 18

Client Sample N	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1099		14-06-0297-1-A	06/04/14 10:08	Solid	GC 48	06/05/14	06/05/14 16:28	140605B05
Comment(s):	- The total concentration	includes individual car	rbon range cond	entrations (es	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			<u>Result</u>	<u>RL</u>	i	<u>DF</u>	Qua	<u>lifiers</u>
C6			ND	5.0)	1.00		
C7			ND	5.0)	1.00		
C8			ND	5.0)	1.00		
C9-C10			ND	5.0)	1.00		
C11-C12			ND	5.0)	1.00		
C13-C14			ND	5.0)	1.00		
C15-C16			ND	5.0)	1.00		
C17-C18			ND	5.0)	1.00		
C19-C20			16	5.0)	1.00		
C21-C22			24	5.0)	1.00		
C23-C24			37	5.0)	1.00		
C25-C28			66	5.0)	1.00		
C29-C32			97	5.0)	1.00		
C33-C36			56	5.0)	1.00		
C37-C40			46	5.0)	1.00		
C41-C44			18	5.0)	1.00		
C6-C44 Total			360	5.0)	1.00		
<u>Surrogate</u>			Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane			85	61-	-145			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

14-06-0297 EPA 3550B EPA 8015B (M)

06/04/14

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 18

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID			
#1100		14-06-0297-2-A	06/04/14 10:09	Solid	GC 48	06/05/14	06/05/14 16:44	140605B05			
Comment(s): - The total concentration includes individual carbon range concentrations (estimated), if any, below the RL reported as ND.											
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>			
C6			ND	4.9		1.00					
C7			ND	4.9		1.00					
C8			ND	4.9		1.00					
C9-C10			ND	4.9		1.00					
C11-C12			ND	4.9		1.00					
C13-C14			ND	4.9		1.00					
C15-C16			ND	4.9		1.00					
C17-C18			ND	4.9		1.00					
C19-C20			ND	4.9		1.00					
C21-C22			ND	4.9		1.00					
C23-C24			5.4	4.9		1.00					
C25-C28			11	4.9		1.00					
C29-C32			13	4.9		1.00					
C33-C36			7.8	4.9		1.00					
C37-C40			7.3	4.9		1.00					
C41-C44			ND	4.9		1.00					
C6-C44 Total			53	5.0		1.00					
Surrogate			Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers					
n-Octacosane			83	61-	145						

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/04/14 14-06-0297 EPA 3550B EPA 8015B (M)

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 18

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1101		14-06-0297-3-A	06/04/14 10:10	Solid	GC 48	06/05/14	06/05/14 16:59	140605B05
Comment(s):	- The total concentration i	includes individual ca	rbon range cond	centrations (es	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			<u>Result</u>	RL	=	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
C6			ND	5.0)	1.00		
C7			ND	5.0)	1.00		
C8			ND	5.0)	1.00		
C9-C10			ND	5.0)	1.00		
C11-C12			ND	5.0)	1.00		
C13-C14			ND	5.0)	1.00		
C15-C16			ND	5.0)	1.00		
C17-C18			ND	5.0)	1.00		
C19-C20			9.4	5.0)	1.00		
C21-C22			7.9	5.0)	1.00		
C23-C24			8.8	5.0)	1.00		
C25-C28			10	5.0)	1.00		
C29-C32			7.4	5.0)	1.00		
C33-C36			ND	5.0)	1.00		
C37-C40			ND	5.0)	1.00		
C41-C44			ND	5.0)	1.00		
C6-C44 Total			54	5.0)	1.00		
Surrogate			Rec. (%)	<u>Co</u>	ontrol Limits	Qualifiers		
n-Octacosane			84	61-	-145			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Units:

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

14-06-0297 EPA 3550B EPA 8015B (M) mg/kg

06/04/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 4 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1102	14-06-0297-4-A	06/04/14 10:11	Solid	GC 48	06/05/14	06/05/14 17:15	140605B05
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		87	61	-145			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/04/14 14-06-0297 EPA 3550B EPA 8015B (M)

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 5 of 18

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1103		14-06-0297-5-A	06/04/14 10:12	Solid	GC 48	06/05/14	06/05/14 17:31	140605B05
Comment(s):	- The total concentration i	ncludes individual car	rbon range cond	centrations (es	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			<u>Result</u>	RL	<u> </u>	<u>DF</u>	<u>Qua</u>	<u>alifiers</u>
C6			ND	25		5.00		
C7			ND	25		5.00		
C8			ND	25		5.00		
C9-C10			ND	25		5.00		
C11-C12			ND	25		5.00		
C13-C14			ND	25		5.00		
C15-C16			ND	25		5.00		
C17-C18			ND	25		5.00		
C19-C20			ND	25		5.00		
C21-C22			ND	25		5.00		
C23-C24			26	25		5.00		
C25-C28			49	25		5.00		
C29-C32			87	25		5.00		
C33-C36			72	25		5.00		
C37-C40			59	25		5.00		
C41-C44			28	25		5.00		
C6-C44 Total			360	5.0)	1.00		
Surrogate			Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane			77	61-	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/04/14 14-06-0297 EPA 3550B EPA 8015B (M)

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 6 of 18

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1104		14-06-0297-6-A	06/04/14 10:13	Solid	GC 48	06/05/14	06/05/14 17:47	140605B05
Comment(s):	- The total concentration	includes individual car	bon range cond	centrations (es	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
C6			ND	5.0)	1.00		
C7			ND	5.0)	1.00		
C8			ND	5.0)	1.00		
C9-C10			ND	5.0)	1.00		
C11-C12			ND	5.0)	1.00		
C13-C14			ND	5.0)	1.00		
C15-C16			ND	5.0)	1.00		
C17-C18			5.6	5.0)	1.00		
C19-C20			13	5.0)	1.00		
C21-C22			28	5.0)	1.00		
C23-C24			36	5.0)	1.00		
C25-C28			51	5.0)	1.00		
C29-C32			50	5.0)	1.00		
C33-C36			25	5.0)	1.00		
C37-C40			18	5.0)	1.00		
C41-C44			ND	5.0)	1.00		
C6-C44 Total			230	5.0	1	1.00		
<u>Surrogate</u>			Rec. (%)	Co	ntrol Limits	Qualifiers		
n-Octacosane			67	61-	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

06/04/14 14-06-0297 EPA 3550B EPA 8015B (M)

Units:

mg/kg Page 7 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1105		14-06-0297-7-A	06/04/14 10:14	Solid	GC 48	06/05/14	06/05/14 18:03	140605B05
Comment(s):	- The total concentration	includes individual ca	rbon range cond	centrations (es	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			<u>Result</u>	<u>RL</u>	=	<u>DF</u>	Qua	<u>alifiers</u>
C6			ND	4.9	9	1.00		
C7			ND	4.9	9	1.00		
C8			ND	4.9	9	1.00		
C9-C10			ND	4.9)	1.00		
C11-C12			ND	4.9	9	1.00		
C13-C14			ND	4.9	9	1.00		
C15-C16			10	4.9)	1.00		
C17-C18			26	4.9)	1.00		
C19-C20			39	4.9)	1.00		
C21-C22			42	4.9)	1.00		
C23-C24			29	4.9)	1.00		
C25-C28			44	4.9)	1.00		
C29-C32			35	4.9)	1.00		
C33-C36			14	4.9)	1.00		
C37-C40			10	4.9)	1.00		
C41-C44			ND	4.9)	1.00		
C6-C44 Total			260	5.0)	1.00		
Surrogato			Poc. (%)	Co	entrol Limite	Qualifiers		
			•			Quaiiieis		
Surrogate n-Octacosane			<u>Rec. (%)</u> 65		ontrol Limits -145	Quaimers		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Units:

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

14-06-0297 EPA 3550B EPA 8015B (M)

06/04/14

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 8 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1106	14-06-0297-8-A	06/04/14 10:15	Solid	GC 48	06/05/14	06/05/14 18:19	140605B05
<u>Parameter</u>	·	Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
C6		ND	5.0		1.00		
C7		ND	5.0		1.00		
C8		ND	5.0		1.00		
C9-C10		ND	5.0		1.00		
C11-C12		ND	5.0		1.00		
C13-C14		ND	5.0		1.00		
C15-C16		ND	5.0		1.00		
C17-C18		ND	5.0		1.00		
C19-C20		ND	5.0		1.00		
C21-C22		ND	5.0		1.00		
C23-C24		ND	5.0		1.00		
C25-C28		ND	5.0		1.00		
C29-C32		ND	5.0		1.00		
C33-C36		ND	5.0		1.00		
C37-C40		ND	5.0		1.00		
C41-C44		ND	5.0		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
n-Octacosane		76	61-	145			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Units:

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

14-06-0297 EPA 3550B EPA 8015B (M)

06/04/14

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 9 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1107	14-06-0297-9-A	06/04/14 10:16	Solid	GC 48	06/05/14	06/05/14 18:34	140605B05
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
C6		ND	4.9		1.00		
C7		ND	4.9		1.00		
C8		ND	4.9		1.00		
C9-C10		ND	4.9		1.00		
C11-C12		ND	4.9		1.00		
C13-C14		ND	4.9		1.00		
C15-C16		ND	4.9		1.00		
C17-C18		ND	4.9		1.00		
C19-C20		ND	4.9		1.00		
C21-C22		ND	4.9		1.00		
C23-C24		ND	4.9		1.00		
C25-C28		ND	4.9		1.00		
C29-C32		ND	4.9		1.00		
C33-C36		ND	4.9		1.00		
C37-C40		ND	4.9		1.00		
C41-C44		ND	4.9		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	Con	ntrol Limits	Qualifiers		
n-Octacosane		71	61-1	145			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

06/04/14 14-06-0297 EPA 3550B EPA 8015B (M)

mg/kg

Units: mg
Page 10 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1108	14-06-0297-10-A	06/04/14 10:17	Solid	GC 48	06/05/14	06/05/14 18:50	140605B05
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
C6		ND	4.9		1.00		
C7		ND	4.9		1.00		
C8		ND	4.9		1.00		
C9-C10		ND	4.9		1.00		
C11-C12		ND	4.9		1.00		
C13-C14		ND	4.9		1.00		
C15-C16		ND	4.9		1.00		
C17-C18		ND	4.9		1.00		
C19-C20		ND	4.9		1.00		
C21-C22		ND	4.9		1.00		
C23-C24		ND	4.9		1.00		
C25-C28		ND	4.9		1.00		
C29-C32		ND	4.9		1.00		
C33-C36		ND	4.9		1.00		
C37-C40		ND	4.9		1.00		
C41-C44		ND	4.9		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
n-Octacosane		80	61-	145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/04/14 14-06-0297 EPA 3550B EPA 8015B (M)

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 11 of 18

Time QC Batch I

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1109		14-06-0297-11-A	06/04/14 10:18	Solid	GC 48	06/05/14	06/05/14 19:22	140605B05
Comment(s):	- The total concentration in	ncludes individual car	bon range cond	centrations (es	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
C6			ND	4.9)	1.00		
C7			ND	4.9)	1.00		
C8			ND	4.9)	1.00		
C9-C10			ND	4.9)	1.00		
C11-C12			ND	4.9)	1.00		
C13-C14			ND	4.9)	1.00		
C15-C16			ND	4.9)	1.00		
C17-C18			ND	4.9)	1.00		
C19-C20			7.1	4.9)	1.00		
C21-C22			9.7	4.9)	1.00		
C23-C24			17	4.9)	1.00		
C25-C28			32	4.9)	1.00		
C29-C32			66	4.9)	1.00		
C33-C36			48	4.9)	1.00		
C37-C40			40	4.9)	1.00		
C41-C44			21	4.9)	1.00		
C6-C44 Total			240	5.0)	1.00		
Surrogate			Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane			81	61-	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/04/14 14-06-0297 EPA 3550B EPA 8015B (M)

Units: mg/kg
Page 12 of 18

Qualifiers

Project: Former Pechiney Ca	Project: Former Pechiney Cast Plate Facility / 0106270030						
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1110	14-06-0297-12-A	06/04/14 10:16	Solid	GC 48	06/05/14	06/05/14 19:38	140605B05
Parameter		Result	RL		<u>DF</u>	Qua	<u>lifiers</u>
C6		ND	5.1		1.00		
C7		ND	5.1		1.00		
C8		ND	5.1		1.00		
C9-C10		ND	5.1		1.00		
C11-C12		ND	5.1		1.00		
C13-C14		ND	5.1		1.00		
C15-C16		ND	5.1		1.00		
C17-C18		ND	5.1		1.00		
C19-C20		ND	5.1		1.00		
C21-C22		ND	5.1		1.00		
C23-C24		ND	5.1		1.00		
C25-C28		ND	5.1		1.00		
C29-C32		ND	5.1		1.00		
C33-C36		ND	5.1		1.00		
C37-C40		ND	5.1		1.00		
C41-C44		ND	5.1		1.00		
C6-C44 Total		ND	5.0)	1.00		

Rec. (%)

79

Control Limits

61-145

RL: Reporting Limit.

Surrogate n-Octacosane

DF: Dilution Factor.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

06/04/14 14-06-0297 EPA 3550B EPA 8015B (M)

Units:

mg/kg Page 13 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1111	14-06-0297-13-A	06/04/14 10:12	Solid	GC 48	06/05/14	06/05/14 19:54	140605B05
Parameter		Result	RL	•	<u>DF</u>	Qua	<u>alifiers</u>
C6		ND	4.9	9	1.00		
C7		ND	4.9	9	1.00		
C8		ND	4.9	9	1.00		
C9-C10		ND	4.9	9	1.00		
C11-C12		ND	4.9	9	1.00		
C13-C14		ND	4.9	9	1.00		
C15-C16		ND	4.9	9	1.00		
C17-C18		ND	4.9	9	1.00		
C19-C20		ND	4.9	9	1.00		
C21-C22		ND	4.9	9	1.00		
C23-C24		ND	4.9	9	1.00		
C25-C28		ND	4.9	9	1.00		
C29-C32		ND	4.9	9	1.00		
C33-C36		ND	4.9)	1.00		
C37-C40		ND	4.9)	1.00		
C41-C44		ND	4.9	9	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	Co	ontrol Limits	Qualifiers		
n-Octacosane		83	61	-145			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

14-06-0297 EPA 3550B EPA 8015B (M)

06/04/14

Units:

mg/kg Page 14 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1112	14-06-0297-14-A	06/04/14 10:11	Solid	GC 48	06/05/14	06/05/14 20:10	140605B05
Parameter	·	Result	RL	=	<u>DF</u>	Qua	lifiers
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	Qualifiers		
n-Octacosane		80	61	-145			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-0297 EPA 3550B EPA 8015B (M)

Units:

mg/kg

06/04/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 15 of 18

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1113		14-06-0297-15-A	06/04/14 10:09	Solid	GC 48	06/05/14	06/05/14 20:25	140605B05
Comment(s):	- The total concentration in	ncludes individual car	bon range cond	centrations (es	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	RL	=	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
C6			ND	5.0)	1.00		
C7			ND	5.0)	1.00		
C8			ND	5.0)	1.00		
C9-C10			ND	5.0)	1.00		
C11-C12			ND	5.0)	1.00		
C13-C14			ND	5.0)	1.00		
C15-C16			ND	5.0)	1.00		
C17-C18			ND	5.0)	1.00		
C19-C20			ND	5.0)	1.00		
C21-C22			ND	5.0)	1.00		
C23-C24			ND	5.0)	1.00		
C25-C28			6.1	5.0)	1.00		
C29-C32			5.7	5.0)	1.00		
C33-C36			ND	5.0)	1.00		
C37-C40			ND	5.0)	1.00		
C41-C44			ND	5.0)	1.00		
C6-C44 Total			23	5.0)	1.00		
<u>Surrogate</u>			Rec. (%)	Co	ontrol Limits	Qualifiers		
n-Octacosane			80	61	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-0297 EPA 3550B EPA 8015B (M)

06/04/14

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 16 of 18

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1114		14-06-0297-16-A	06/04/14 10:10	Solid	GC 48	06/05/14	06/05/14 20:41	140605B05
Comment(s):	- The total concentration	includes individual car	bon range cond	entrations (es	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	RL	=	<u>DF</u>	Qua	<u>alifiers</u>
C6			ND	4.9	9	1.00		
C7			ND	4.9	9	1.00		
C8			ND	4.9	9	1.00		
C9-C10			ND	4.9	9	1.00		
C11-C12			ND	4.9	9	1.00		
C13-C14			ND	4.9	9	1.00		
C15-C16			ND	4.9	9	1.00		
C17-C18			ND	4.9	9	1.00		
C19-C20			51	4.9	9	1.00		
C21-C22			42	4.9	9	1.00		
C23-C24			41	4.9	9	1.00		
C25-C28			66	4.9	9	1.00		
C29-C32			93	4.9	9	1.00		
C33-C36			61	4.9	9	1.00		
C37-C40			44	4.9	9	1.00		
C41-C44			26	4.9	9	1.00		
C6-C44 Total			420	5.0)	1.00		
Surrogate			Rec. (%)	<u>Cc</u>	ontrol Limits	Qualifiers		
n-Octacosane			76	61	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

n-Octacosane

Date Received:
Work Order:
Preparation:
Method:

14-06-0297 EPA 3550B EPA 8015B (M)

06/04/14

mg/kg

Units:

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 17 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1115	14-06-0297-17-A	06/04/14 10:24	Solid	GC 48	06/05/14	06/05/14 20:57	140605B05
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	lifiers
C6		ND	5.0)	1.00		
C7		ND	5.0	1	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0	1	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0	1	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0	1	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0	1	1.00		
C41-C44		ND	5.0	1	1.00		
C6-C44 Total		ND	5.0	1	1.00		
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		

79

61-145

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received:
Work Order:
Preparation:
Method:

14-06-0297 EPA 3550B EPA 8015B (M)

06/04/14

mg/kg

Units:

Page 18 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-943	N/A	Solid	GC 48	06/05/14	06/05/14 15:24	140605B05
Parameter		Result	<u>RL</u>		DF	Qua	lifiers
C6		ND	5.0		1.00		
C7		ND	5.0		1.00		
C8		ND	5.0		1.00		
C9-C10		ND	5.0		1.00		
C11-C12		ND	5.0		1.00		
C13-C14		ND	5.0		1.00		
C15-C16		ND	5.0		1.00		
C17-C18		ND	5.0		1.00		
C19-C20		ND	5.0		1.00		
C21-C22		ND	5.0		1.00		
C23-C24		ND	5.0		1.00		
C25-C28		ND	5.0		1.00		
C29-C32		ND	5.0		1.00		
C33-C36		ND	5.0		1.00		
C37-C40		ND	5.0		1.00		
C41-C44		ND	5.0		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	Qualifiers		
n-Octacosane		80	61-1	145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

06/04/14 14-06-0297 EPA 3050B EPA 6010B

Units:

mg/kg Page 1 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1099	14-06-0297-1-A	06/04/14 10:08	Solid	ICP 7300	06/05/14	06/05/14 19:14	140605L01
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	lifiers
Antimony		ND	(0.750	1.00		
Arsenic		2.76	(0.750	1.00		
Barium		150	(0.500	1.00		
Beryllium		0.388	(0.250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		18.5	(0.250	1.00		
Cobalt		11.9	(0.250	1.00		
Copper		29.8	(0.500	1.00		
Lead		59.7	(0.500	1.00		
Molybdenum		ND	(0.250	1.00		
Nickel		17.4	(0.250	1.00		
Selenium		ND	(0.750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	(0.750	1.00		
Vanadium		36.6	(0.250	1.00		
Zinc		81.9	1	1.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

06/04/14 14-06-0297 EPA 3050B EPA 6010B

mg/kg

Units: mg
Page 2 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1100	14-06-0297-2-A	06/04/14 10:09	Solid	ICP 7300	06/05/14	06/05/14 19:15	140605L01
<u>Parameter</u>		Result	E	<u> </u>	<u>DF</u>	Qua	lifiers
Antimony		ND	C).758	1.01		
Arsenic		6.37	C).758	1.01		
Barium		146	C).505	1.01		
Beryllium		0.382	C).253	1.01		
Cadmium		ND	C).505	1.01		
Chromium		19.9	C).253	1.01		
Cobalt		13.2	C).253	1.01		
Copper		63.7	C).505	1.01		
Lead		37.3	C).505	1.01		
Molybdenum		0.311	C).253	1.01		
Nickel		44.6	C).253	1.01		
Selenium		ND	C).758	1.01		
Silver		ND	C).253	1.01		
Thallium		ND	C).758	1.01		
Vanadium		35.1	C).253	1.01		
Zinc		123	1	1.01	1.01		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

06/04/14 14-06-0297 EPA 3050B EPA 6010B

mg/kg

020

Units:

Page 3 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1101	14-06-0297-3-A	06/04/14 10:10	Solid	ICP 7300	06/05/14	06/05/14 19:16	140605L01
Parameter	·	Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.746	0.995		
Arsenic		1.14	(0.746	0.995		
Barium		166	(0.498	0.995		
Beryllium		0.449	(0.249	0.995		
Cadmium		ND	(0.498	0.995		
Chromium		20.5	(0.249	0.995		
Cobalt		13.8	(0.249	0.995		
Copper		21.4	(0.498	0.995		
Lead		2.57	(0.498	0.995		
Molybdenum		0.278	(0.249	0.995		
Nickel		15.9	(0.249	0.995		
Selenium		ND	(0.746	0.995		
Silver		ND	(0.249	0.995		
Thallium		ND	(0.746	0.995		
Vanadium		41.5	(0.249	0.995		
Zinc		65.8	(0.995	0.995		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/04/14 14-06-0297 EPA 3050B EPA 6010B

Units:

mg/kg Page 4 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

ïme QC Batch ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1102	14-06-0297-4-A	06/04/14 10:11	Solid	ICP 7300	06/05/14	06/05/14 19:22	140605L01
<u>Parameter</u>		Result]	RL	<u>DF</u>	Qua	llifiers
Antimony		ND	(0.725	0.966		
Arsenic		1.50	(0.725	0.966		
Barium		157	(0.483	0.966		
Beryllium		0.439	(0.242	0.966		
Cadmium		ND	(0.483	0.966		
Chromium		19.4	(0.242	0.966		
Cobalt		13.3	(0.242	0.966		
Copper		19.5	(0.483	0.966		
Lead		1.72	(0.483	0.966		
Molybdenum		ND	(0.242	0.966		
Nickel		14.7	(0.242	0.966		
Selenium		ND	(0.725	0.966		
Silver		ND	(0.242	0.966		
Thallium		ND	(0.725	0.966		
Vanadium		40.1	(0.242	0.966		
Zinc		63.2	(0.966	0.966		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/04/14 14-06-0297 EPA 3050B EPA 6010B mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 5 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1103	14-06-0297-5-A	06/04/14 10:12	Solid	ICP 7300	06/05/14	06/05/14 19:23	140605L01
Parameter		<u>Result</u>	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().728	0.971		
Arsenic		3.10	().728	0.971		
Barium		117	().485	0.971		
Beryllium		0.263	(0.243	0.971		
Cadmium		0.534	().485	0.971		
Chromium		20.5	(0.243	0.971		
Cobalt		8.77	(0.243	0.971		
Copper		75.2	().485	0.971		
Lead		94.6	().485	0.971		
Molybdenum		0.371	(0.243	0.971		
Nickel		42.8	(0.243	0.971		
Selenium		ND	().728	0.971		
Silver		ND	(0.243	0.971		
Thallium		ND	().728	0.971		
Vanadium		27.9	(0.243	0.971		
Zinc		271	().971	0.971		

Units:

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

06/04/14 14-06-0297 EPA 3050B EPA 6010B

mg/kg Page 6 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

ime QC Batch IE

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1104	14-06-0297-6-A	06/04/14 10:13	Solid	ICP 7300	06/05/14	06/05/14 19:25	140605L01
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().739	0.985		
Arsenic		0.981	().739	0.985		
Barium		107	().493	0.985		
Beryllium		0.317	().246	0.985		
Cadmium		2.00	(0.493	0.985		
Chromium		20.2	(0.246	0.985		
Cobalt		11.2	(0.246	0.985		
Copper		55.0	(0.493	0.985		
Lead		30.8	(0.493	0.985		
Molybdenum		1.26	(0.246	0.985		
Nickel		15.1	(0.246	0.985		
Selenium		ND	().739	0.985		
Silver		ND	(0.246	0.985		
Thallium		ND	().739	0.985		
Vanadium		30.1	(0.246	0.985		
Zinc		334	().985	0.985		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Vanadium

Zinc

Date Received: Work Order: Preparation: Method:

Units:

06/04/14 14-06-0297 EPA 3050B EPA 6010B

mg/kg Page 7 of 18

1.00

1.00

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1105	14-06-0297-7-A	06/04/14 10:14	Solid	ICP 7300	06/05/14	06/05/14 19:26	140605L01
<u>Parameter</u>		<u>Result</u>	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().750	1.00		
Arsenic		1.53	().750	1.00		
Barium		135	().500	1.00		
Beryllium		0.391	(0.250	1.00		
Cadmium		ND	().500	1.00		
Chromium		17.6	().250	1.00		
Cobalt		11.7	(0.250	1.00		
Copper		19.1	().500	1.00		
Lead		4.64	().500	1.00		
Molybdenum		ND	(0.250	1.00		
Nickel		13.7	().250	1.00		
Selenium		ND	().750	1.00		
Silver		ND	().250	1.00		
Thallium		ND	().750	1.00		

0.250

1.00

35.6

69.1

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/04/14 14-06-0297 EPA 3050B EPA 6010B

Units:

mg/kg Page 8 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

ime OC Batch II

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1106	14-06-0297-8-A	06/04/14 10:15	Solid	ICP 7300	06/05/14	06/05/14 19:27	140605L01
Parameter	·	Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.732	0.976		
Arsenic		0.817	(0.732	0.976		
Barium		125	(0.488	0.976		
Beryllium		0.392	(0.244	0.976		
Cadmium		ND	(0.488	0.976		
Chromium		16.6	(0.244	0.976		
Cobalt		11.3	(0.244	0.976		
Copper		16.1	(0.488	0.976		
Lead		1.60	(0.488	0.976		
Molybdenum		ND	(0.244	0.976		
Nickel		12.1	(0.244	0.976		
Selenium		ND	(0.732	0.976		
Silver		ND	(0.244	0.976		
Thallium		ND	(0.732	0.976		
Vanadium		35.5	(0.244	0.976		
Zinc		52.8	(0.976	0.976		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/04/14 14-06-0297 EPA 3050B EPA 6010B

Units:

mg/kg Page 9 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

Time QC Batch II

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1107	14-06-0297-9-A	06/04/14 10:16	Solid	ICP 7300	06/05/14	06/05/14 19:28	140605L01
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Antimony		ND	(0.735	0.980		
Arsenic		0.925	(0.735	0.980		
Barium		132	(0.490	0.980		
Beryllium		0.388	(0.245	0.980		
Cadmium		ND	(0.490	0.980		
Chromium		17.4	(0.245	0.980		
Cobalt		11.7	(0.245	0.980		
Copper		16.5	(0.490	0.980		
Lead		1.68	(0.490	0.980		
Molybdenum		ND	(0.245	0.980		
Nickel		12.7	(0.245	0.980		
Selenium		ND	(0.735	0.980		
Silver		ND	(0.245	0.980		
Thallium		ND	(0.735	0.980		
Vanadium		37.5	(0.245	0.980		
Zinc		54.3	(0.980	0.980		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/04/14 14-06-0297 EPA 3050B EPA 6010B

Units:

mg/kg Page 10 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1108	14-06-0297-10-A	06/04/14 10:17	Solid	ICP 7300	06/05/14	06/05/14 19:29	140605L01
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Antimony		ND	(0.732	0.976		
Arsenic		1.21	(0.732	0.976		
Barium		155	(0.488	0.976		
Beryllium		0.371	(0.244	0.976		
Cadmium		ND	(0.488	0.976		
Chromium		16.6	(0.244	0.976		
Cobalt		11.5	(0.244	0.976		
Copper		23.0	(0.488	0.976		
Lead		10.6	(0.488	0.976		
Molybdenum		ND	(0.244	0.976		
Nickel		13.7	(0.244	0.976		
Selenium		ND	(0.732	0.976		
Silver		ND	(0.244	0.976		
Thallium		ND	(0.732	0.976		
Vanadium		34.8	(0.244	0.976		
Zinc		110	(0.976	0.976		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/04/14 14-06-0297 EPA 3050B EPA 6010B

Units:

mg/kg Page 11 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1109	14-06-0297-11-A	06/04/14 10:18	Solid	ICP 7300	06/05/14	06/05/14 19:30	140605L01
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND		0.743	0.990		
Arsenic		24.6		0.743	0.990		
Barium		142		0.495	0.990		
Beryllium		0.405		0.248	0.990		
Cadmium		ND		0.495	0.990		
Chromium		22.1		0.248	0.990		
Cobalt		10.8		0.248	0.990		
Copper		108		0.495	0.990		
Lead		97.2		0.495	0.990		
Molybdenum		0.437		0.248	0.990		
Nickel		18.3		0.248	0.990		
Selenium		ND		0.743	0.990		
Silver		ND		0.248	0.990		
Thallium		ND		0.743	0.990		
Vanadium		32.9		0.248	0.990		
Zinc		256		0.990	0.990		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/04/14 14-06-0297 EPA 3050B EPA 6010B

Units:

mg/kg Page 12 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1110	14-06-0297-12-A	06/04/14 10:16	Solid	ICP 7300	06/05/14	06/05/14 19:31	140605L01
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.761	1.02		
Arsenic		2.16	(0.761	1.02		
Barium		137	(0.508	1.02		
Beryllium		0.394	(0.254	1.02		
Cadmium		ND	(0.508	1.02		
Chromium		18.0	(0.254	1.02		
Cobalt		12.0	(0.254	1.02		
Copper		24.1	(0.508	1.02		
Lead		8.11	(0.508	1.02		
Molybdenum		ND	(0.254	1.02		
Nickel		13.5	(0.254	1.02		
Selenium		ND	(0.761	1.02		
Silver		ND	(0.254	1.02		
Thallium		ND	(0.761	1.02		
Vanadium		36.3	(0.254	1.02		
Zinc		69.6		1.02	1.02		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/04/14 14-06-0297 EPA 3050B EPA 6010B

mg/kg Page 13 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1111	14-06-0297-13-A	06/04/14 10:12	Solid	ICP 7300	06/05/14	06/05/14 19:32	140605L01
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().735	0.980		
Arsenic		1.54	().735	0.980		
Barium		138	(0.490	0.980		
Beryllium		0.387	().245	0.980		
Cadmium		ND	(0.490	0.980		
Chromium		17.8	().245	0.980		
Cobalt		12.3	().245	0.980		
Copper		21.4	(0.490	0.980		
Lead		8.37	(0.490	0.980		
Molybdenum		ND	().245	0.980		
Nickel		14.0	().245	0.980		
Selenium		ND	().735	0.980		
Silver		ND	().245	0.980		
Thallium		ND	().735	0.980		
Vanadium		36.6	().245	0.980		
Zinc		67.3	(0.980	0.980		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received:
Work Order:
Preparation:
Method:

06/04/14 14-06-0297 EPA 3050B EPA 6010B

Page 14 of 18

mg/kg

Units:

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1112	14-06-0297-14-A	06/04/14 10:11	Solid	ICP 7300	06/05/14	06/05/14 19:39	140605L01
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().728	0.971		
Arsenic		1.08	().728	0.971		
Barium		120	(0.485	0.971		
Beryllium		0.371	().243	0.971		
Cadmium		ND	(0.485	0.971		
Chromium		15.6	(0.243	0.971		
Cobalt		10.7	().243	0.971		
Copper		16.3	().485	0.971		
Lead		2.65	().485	0.971		
Molybdenum		ND	().243	0.971		
Nickel		11.9	(0.243	0.971		
Selenium		ND	().728	0.971		
Silver		ND	(0.243	0.971		
Thallium		ND	().728	0.971		
Vanadium		34.1	(0.243	0.971		
Zinc		54.3	().971	0.971		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/04/14 14-06-0297 EPA 3050B EPA 6010B

Units:

mg/kg Page 15 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1113	14-06-0297-15-A	06/04/14 10:09	Solid	ICP 7300	06/05/14	06/05/14 19:40	140605L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.743	0.990		
Arsenic		1.32	(0.743	0.990		
Barium		165	(0.495	0.990		
Beryllium		0.423	(0.248	0.990		
Cadmium		ND	(0.495	0.990		
Chromium		19.2	(0.248	0.990		
Cobalt		12.4	(0.248	0.990		
Copper		63.7	(0.495	0.990		
Lead		1.76	(0.495	0.990		
Molybdenum		ND	(0.248	0.990		
Nickel		17.5	(0.248	0.990		
Selenium		ND	(0.743	0.990		
Silver		ND	(0.248	0.990		
Thallium		ND	(0.743	0.990		
Vanadium		39.1	(0.248	0.990		
Zinc		62.5	(0.990	0.990		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/04/14 14-06-0297 EPA 3050B EPA 6010B

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 16 of 18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1114	14-06-0297-16-A	06/04/14 10:10	Solid	ICP 7300	06/05/14	06/05/14 19:41	140605L01
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().761	1.02		
Arsenic		2.33	().761	1.02		
Barium		178	().508	1.02		
Beryllium		0.384	().254	1.02		
Cadmium		ND	(0.508	1.02		
Chromium		20.9	().254	1.02		
Cobalt		12.9	().254	1.02		
Copper		108	().508	1.02		
Lead		98.5	().508	1.02		
Molybdenum		ND	().254	1.02		
Nickel		35.5	().254	1.02		
Selenium		ND	().761	1.02		
Silver		ND	().254	1.02		
Thallium		ND	().761	1.02		
Vanadium		36.3	().254	1.02		
Zinc		113	1	1.02	1.02		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

14-06-0297 EPA 3050B EPA 6010B

06/04/14

Units:

mg/kg Page 17 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1115	14-06-0297-17-A	06/04/14 10:24	Solid	ICP 7300	06/05/14	06/05/14 19:42	140605L01
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	lifiers
Antimony		ND	(0.739	0.985		
Arsenic		1.21	(0.739	0.985		
Barium		147	(0.493	0.985		
Beryllium		0.405	(0.246	0.985		
Cadmium		ND	(0.493	0.985		
Chromium		18.3	(0.246	0.985		
Cobalt		12.6	(0.246	0.985		
Copper		18.9	(0.493	0.985		
Lead		2.40	(0.493	0.985		
Molybdenum		ND	(0.246	0.985		
Nickel		14.0	(0.246	0.985		
Selenium		ND	(0.739	0.985		
Silver		ND	(0.246	0.985		
Thallium		ND	(0.739	0.985		
Vanadium		38.5	(0.246	0.985		
Zinc		61.7	(0.985	0.985		

RL: Reporting Limit. DF: Dilution Factor. MDL: M

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/04/14 14-06-0297 EPA 3050B EPA 6010B

Units:

mg/kg Page 18 of 18

Project: Former Pechiney Cast Plate Facility / 0106270030

Time 00 Batch 15

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-18449	N/A	Solid	ICP 7300	06/05/14	06/05/14 18:57	140605L01
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	lifiers
Antimony		ND	C).750	1.00		
Arsenic		ND	C).750	1.00		
Barium		ND	C).500	1.00		
Beryllium		ND	C).250	1.00		
Cadmium		ND	C	0.500	1.00		
Chromium		ND	C	0.250	1.00		
Cobalt		ND	C	0.250	1.00		
Copper		ND	C	0.500	1.00		
Lead		ND	C	0.500	1.00		
Molybdenum		ND	C	0.250	1.00		
Nickel		ND	C	0.250	1.00		
Selenium		ND	C	0.750	1.00		
Silver		ND	C	0.250	1.00		
Thallium		ND	C	0.750	1.00		
Vanadium		ND	C	0.250	1.00		
Zinc		ND	1	.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

14-06-0297 EPA 7471A Total EPA 7471A mg/kg

06/04/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
#1099	14-06-0297-1-A	06/04/14 10:08	Solid	Mercury 05	06/05/14	06/05/14 19:45	140605L01
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury		ND		0.0833	1.00		
#1100	14-06-0297-2-A	06/04/14 10:09	Solid	Mercury 05	06/05/14	06/05/14 19:52	140605L01
Parameter Parameter		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0847	1.00		
#1101	14-06-0297-3-A	06/04/14 10:10	Solid	Mercury 05	06/05/14	06/05/14 19:54	140605L01
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		0.0993		0.0847	1.00		
#1102	14-06-0297-4-A	06/04/14 10:11	Solid	Mercury 05	06/05/14	06/05/14 19:56	140605L01
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0694	1.00		
#1103	14-06-0297-5-A	06/04/14 10:12	Solid	Mercury 05	06/05/14	06/05/14 19:58	140605L01
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		0.310		0.0806	1.00		
#1104	14-06-0297-6-A	06/04/14 10:13	Solid	Mercury 05	06/05/14	06/05/14 20:01	140605L01
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		0.185		0.0820	1.00		
#1105	14-06-0297-7-A	06/04/14 10:14	Solid	Mercury 05	06/05/14	06/05/14 20:07	140605L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0781	1.00		
#1106	14-06-0297-8-A	06/04/14 10:15	Solid	Mercury 05	06/05/14	06/05/14 20:10	140605L01
Parameter_		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0820	1.00		

RL: Reporting Limit. DF: Dilu

DF: Dilution Factor.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

14-06-0297 EPA 7471A Total EPA 7471A mg/kg

06/04/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1107	14-06-0297-9-A	06/04/14 10:16	Solid	Mercury 05	06/05/14	06/05/14 20:12	140605L01
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qu	alifiers
Mercury		ND		0.0847	1.00		
#1108	14-06-0297-10-A	06/04/14 10:17	Solid	Mercury 05	06/05/14	06/05/14 20:14	140605L01
Parameter Parame		Result	-	<u>RL</u>	<u>DF</u>	Qu	alifiers
Mercury		0.342		0.0794	1.00		
#1109	14-06-0297-11-A	06/04/14 10:18	Solid	Mercury 05	06/05/14	06/05/14 20:16	140605L01
Parameter Parameter		Result		RL	DF	Qu	alifiers
Mercury		0.396		0.0820	1.00		
#1110	14-06-0297-12-A	06/04/14 10:16	Solid	Mercury 05	06/05/14	06/05/14 20:18	140605L01
<u>Parameter</u>		Result		RL	<u>DF</u>	Qu	alifiers
Mercury		ND		0.0862	1.00		
#1111	14-06-0297-13-A	06/04/14 10:12	Solid	Mercury 05	06/05/14	06/05/14 20:21	140605L01
Parameter Parameter		Result		<u>RL</u>	<u>DF</u>	Qu	alifiers
Mercury		0.0803		0.0781	1.00		
#1112	14-06-0297-14-A	06/04/14 10:11	Solid	Mercury 05	06/05/14	06/05/14 20:23	140605L01
<u>Parameter</u>		Result		RL	<u>DF</u>	Qu	alifiers
Mercury		ND		0.0758	1.00		
#1113	14-06-0297-15-A	06/04/14 10:09	Solid	Mercury 05	06/05/14	06/05/14 20:25	140605L01
Parameter Parameter		Result		<u>RL</u>	<u>DF</u>	Qu	alifiers
Mercury		ND		0.0781	1.00		
* 1114	14-06-0297-16-A	06/04/14 10:10	Solid	Mercury 05	06/05/14	06/05/14 20:28	140605L01
Parameter Parame		Result		RL	<u>DF</u>	Qu	alifiers
Mercury		ND		0.0781	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-0297 EPA 7471A Total EPA 7471A

06/04/14

Units:

mg/kg Page 3 of 3

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1115	14-06-0297-17-A	06/04/14 10:24	Solid	Mercury 05	06/05/14	06/05/14 20:34	140605L01
Parameter		Result	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>llifiers</u>
Mercury		ND	0.	.0820	1.00		

Method Blank	099-16-272-288	N/A	Solid	Mercury 05	06/05/14	06/05/14 19:41	140605L01
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>
Mercury		ND	0.0	833	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

14-06-0297 EPA 3540C EPA 8082 ug/kg

06/04/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1099	14-06-0297-1-A	06/04/14 10:08	Solid	GC 58	06/04/14	06/06/14 23:34	140604L16
<u>Parameter</u>		<u>Result</u>	RL	•	<u>DF</u>	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
Decachlorobiphenyl		93	60-	-125			
2,4,5,6-Tetrachloro-m-Xylene		103	50-	-130			

#1100	14-06-0297-2-A	06/04/14 10:09	Solid GC 58	06/04/14	06/06/14 23:52	140604L16
<u>Parameter</u>		Result	RL	DF	Qu	<u>alifiers</u>
Aroclor-1016		ND	51	1.00		
Aroclor-1221		ND	51	1.00		
Aroclor-1232		ND	51	1.00		
Aroclor-1242		ND	51	1.00		
Aroclor-1248		ND	51	1.00		
Aroclor-1254		ND	51	1.00		
Aroclor-1260		ND	51	1.00		
Aroclor-1262		ND	51	1.00		
Aroclor-1268		ND	51	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		96	60-125			
2,4,5,6-Tetrachloro-m-Xylene		103	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/04/14 14-06-0297 EPA 3540C EPA 8082 ug/kg

Units:

Page 2 of 9

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1101	14-06-0297-3-A	06/04/14 10:10	Solid	GC 58	06/04/14	06/07/14 00:10	140604L16
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Cor	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		93	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		100	50-	130			

#1102	14-06-0297-4-A	06/04/14 10:11	Solid GC 58	06/04/14	06/07/14 10:08	140604L16
Parameter		Result	<u>RL</u>	<u>DF</u>	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		74	60-125			
2,4,5,6-Tetrachloro-m-Xylene		103	50-130			

RL: Reporting Limit.

DF: Dilution Factor.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/04/14 14-06-0297 EPA 3540C EPA 8082

Units:

ug/kg Page 3 of 9

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1103	14-06-0297-5-A	06/04/14 10:12	Solid	GC 58	06/04/14	06/07/14 10:27	140604L16
Parameter		Result	RI	=	DF	Qua	<u>llifiers</u>
Aroclor-1016		ND	51		1.00		
Aroclor-1221		ND	51		1.00		
Aroclor-1232		ND	51		1.00		
Aroclor-1242		ND	51		1.00		
Aroclor-1248		560	51		1.00		
Aroclor-1254		ND	51		1.00		
Aroclor-1260		100	51		1.00		
Aroclor-1262		ND	51		1.00		
Aroclor-1268		ND	51		1.00		
Surrogate		Rec. (%)	<u>Ca</u>	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		98	60)-125			
2,4,5,6-Tetrachloro-m-Xylene		101	50)-130			

#1104	14-06-0297-6-A	06/04/14 10:13	Solid GC 58	06/04/14	06/07/14 10:45	140604L16
<u>Parameter</u>		Result	<u>RL</u>	DF	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
<u>Surrogate</u>		Rec. (%)	Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		88	60-125			
2,4,5,6-Tetrachloro-m-Xylene		96	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

14-06-0297 EPA 3540C EPA 8082 ug/kg

06/04/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 4 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1105	14-06-0297-7-A	06/04/14 10:14	Solid	GC 58	06/04/14	06/07/14 11:03	140604L16
<u>Parameter</u>	·	Result	<u>RL</u>		<u>DF</u>	Qua	lifiers
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		86	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		92	50-	130			

#1106	14-06-0297-8-A	06/04/14 10:15	Solid GC 58	06/04/14	06/07/14 11:21	140604L16
Parameter		Result	<u>RL</u>	DF	Qual	<u>ifiers</u>
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		89	60-125			
2,4,5,6-Tetrachloro-m-Xylene		109	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/04/14 14-06-0297 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 5 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1107	14-06-0297-9-A	06/04/14 10:16	Solid	GC 58	06/04/14	06/07/14 11:39	140604L16
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
<u>Surrogate</u>		Rec. (%)	Cor	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		89	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		110	50-	130			

#1108	14-06-0297-10-A	06/04/14 10:17	Solid 0	GC 58 06/04/14	06/07/14 11:57	140604L16
Parameter		Result	<u>RL</u>	<u>DF</u>	Qu	<u>ialifiers</u>
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Contr	ol Limits Qualifiers	<u> </u>	
Decachlorobiphenyl		93	60-12	25		
2,4,5,6-Tetrachloro-m-Xylene		109	50-13	30		

RL: Reporting Limit. DF:

DF: Dilution Factor.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/04/14 14-06-0297 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 6 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1109	14-06-0297-11-A	06/04/14 10:18	Solid	GC 58	06/04/14	06/07/14 12:15	140604L16
Parameter		Result	RL	.	DF	Qua	<u>llifiers</u>
Aroclor-1016		ND	51		1.00		
Aroclor-1221		ND	51		1.00		
Aroclor-1232		ND	51		1.00		
Aroclor-1242		ND	51		1.00		
Aroclor-1248		ND	51		1.00		
Aroclor-1254		ND	51		1.00		
Aroclor-1260		730	51		1.00		
Aroclor-1262		ND	51		1.00		
Aroclor-1268		ND	51		1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		233	60	-125	2,7		
2,4,5,6-Tetrachloro-m-Xylene		105	50	-130			

#1110	14-06-0297-12-A	06/04/14 10:16	Solid GC 58	06/04/14	06/07/14 12:32	140604L16
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qu	<u>alifiers</u>
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		92	60-125			
2,4,5,6-Tetrachloro-m-Xylene		108	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/04/14 14-06-0297 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 7 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1111	14-06-0297-13-A	06/04/14 10:12	Solid	GC 58	06/04/14	06/07/14 12:51	140604L16
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	lifiers
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		91	60-1	125			
2,4,5,6-Tetrachloro-m-Xylene		108	50-1	130			

#1112	14-06-0297-14-A	06/04/14 10:11	Solid GC 58	06/04/14	06/07/14 13:09	140604L16
Parameter		Result	<u>RL</u>	<u>DF</u>	Qua	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		91	60-125			
2,4,5,6-Tetrachloro-m-Xylene		103	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

14-06-0297 EPA 3540C EPA 8082 ug/kg

06/04/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 8 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1113	14-06-0297-15-A	06/04/14 10:09	Solid	GC 58	06/04/14	06/07/14 13:26	140604L16
Parameter		Result	RL		DF	Qua	<u>alifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		89	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		101	50-	130			

#1114	14-06-0297-16-A	06/04/14 10:10	Solid GC 5	06/04/14	06/07/14 13:44	140604L16
Parameter		Result	RL	DF	Qu	<u>ialifiers</u>
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control L	imits Qualifiers		
Decachlorobiphenyl		94	60-125			
2,4,5,6-Tetrachloro-m-Xylene		90	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/04/14 14-06-0297 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 9 of 9

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1115	14-06-0297-17-A	06/04/14 10:24	Solid	GC 58	06/04/14	06/07/14 14:02	140604L16
Parameter	·	Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Col	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		90	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		103	50-	130			

Method Blank	099-02-003-263	N/A	Solid GC 58	06/04/14	06/06/14 140604L16 22:58
Parameter		Result	<u>RL</u>	<u>DF</u>	Qualifiers
Aroclor-1016		ND	50	1.00	
Aroclor-1221		ND	50	1.00	
Aroclor-1232		ND	50	1.00	
Aroclor-1242		ND	50	1.00	
Aroclor-1248		ND	50	1.00	
Aroclor-1254		ND	50	1.00	
Aroclor-1260		ND	50	1.00	
Aroclor-1262		ND	50	1.00	
Aroclor-1268		ND	50	1.00	
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>	
Decachlorobiphenyl		104	60-125		
2,4,5,6-Tetrachloro-m-Xylene		109	50-130		

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-0297 EPA 3550B EPA 8015B (M)

06/04/14

Page 1 of 4

Project: Former Pechiney Cast Plate Facility / 0106270030

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
#1099	Sample		Solid	GC	48	06/05/14	06/05/14	16:28	140605S05	
#1099	Matrix Spike		Solid	GC	48	06/05/14	06/05/14	15:55	140605S05	
#1099	Matrix Spike I	Duplicate	Solid	GC	48	06/05/14	06/05/14	16:11	140605S05	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	364.5	400.0	593.7	57	861.3	124	64-130	37	0-15	3,4

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received: Work Order: Preparation: Method:

06/04/14 14-06-0297 **EPA 3050B EPA 6010B**

Page 2 of 4

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	llyzed	MS/MSD Ba	atch Number
#1099	Sample		Solid	ICP	7300	06/05/14	06/05/14	19:14	140605S01	
#1099	Matrix Spike		Solid	ICP	7300	06/05/14	06/05/14	19:12	140605S01	
#1099	Matrix Spike	Duplicate	Solid	ICP	7300	06/05/14	06/05/14	19:13	140605S01	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	11.15	45	11.44	46	50-115	3	0-20	3
Arsenic	2.758	25.00	29.04	105	28.54	103	75-125	2	0-20	
Barium	149.8	25.00	174.0	4X	174.8	4X	75-125	4X	0-20	Q
Beryllium	0.3880	25.00	26.85	106	27.07	107	75-125	1	0-20	
Cadmium	ND	25.00	25.96	104	26.10	104	75-125	1	0-20	
Chromium	18.45	25.00	44.73	105	45.33	107	75-125	1	0-20	
Cobalt	11.92	25.00	38.51	106	38.90	108	75-125	1	0-20	
Copper	29.80	25.00	70.48	163	59.09	117	75-125	18	0-20	3
Lead	59.66	25.00	98.49	155	67.25	30	75-125	38	0-20	3,4
Molybdenum	ND	25.00	25.26	101	25.36	101	75-125	0	0-20	
Nickel	17.44	25.00	44.91	110	41.71	97	75-125	7	0-20	
Selenium	ND	25.00	20.77	83	21.09	84	75-125	2	0-20	
Silver	ND	12.50	13.13	105	13.19	105	75-125	0	0-20	
Thallium	ND	25.00	19.90	80	20.04	80	75-125	1	0-20	
Vanadium	36.58	25.00	61.37	99	62.44	103	75-125	2	0-20	
Zinc	81.85	25.00	138.2	225	106.1	97	75-125	26	0-20	3,4

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-0297 EPA 7471A Total EPA 7471A

06/04/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 4

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
#1099	Sample		Solid	Mer	cury 05	06/05/14	06/05/14	19:45	140605S01	
#1099	Matrix Spike		Solid	Mer	cury 05	06/05/14	06/05/14	19:47	140605S01	
#1099	Matrix Spike	Duplicate	Solid	Mer	cury 05	06/05/14	06/05/14	19:49	140605S01	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.8350	0.8923	107	0.8774	105	71-137	2	0-14	

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: 06/04/14 14-06-0297 EPA 3540C

Method:

EPA 8082 Page 4 of 4

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
#1102	Sample		Solid	GC	58	06/04/14	06/07/14	10:08	140604S16	
#1102	Matrix Spike		Solid	GC	58	06/04/14	06/07/14	14:20	140604S16	
#1102	Matrix Spike	Duplicate	Solid	GC	58	06/04/14	06/07/14	14:38	140604S16	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Aroclor-1016	ND	100.0	86.31	86	78.60	79	50-135	9	0-25	
Aroclor-1260	ND	100.0	76.58	77	76.30	76	50-135	0	0-25	

RPD: Relative Percent Difference. CL: Control Limits

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

14-06-0297 EPA 3550B EPA 8015B (M)

06/04/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 4

Quality Control Sample ID	Туре	Matrix	Instrument I	Date Prepared	Date Analyzed	LCS Batch Number
099-15-490-943	LCS	Solid	GC 48	06/05/14	06/05/14 15:40	140605B05
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
TPH as Diesel		400.0	314.5	79	75-123	3

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

06/04/14 14-06-0297 EPA 3050B EPA 6010B

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 4

Quality Control Sample ID	Type	Matrix	Instrumen	t Date Prepa	red Date Analyze	ed LCS Batch N	lumber
097-01-002-18449	LCS	Solid	ICP 7300	06/05/14	06/05/14 19:0	06 140605L01	
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		25.00	26.72	107	80-120	73-127	
Arsenic		25.00	26.19	105	80-120	73-127	
Barium		25.00	26.87	107	80-120	73-127	
Beryllium		25.00	26.00	104	80-120	73-127	
Cadmium		25.00	27.36	109	80-120	73-127	
Chromium		25.00	27.22	109	80-120	73-127	
Cobalt		25.00	29.41	118	80-120	73-127	
Copper		25.00	26.78	107	80-120	73-127	
Lead		25.00	27.36	109	80-120	73-127	
Molybdenum		25.00	27.03	108	80-120	73-127	
Nickel		25.00	28.34	113	80-120	73-127	
Selenium		25.00	24.10	96	80-120	73-127	
Silver		12.50	13.27	106	80-120	73-127	
Thallium		25.00	28.30	113	80-120	73-127	
Vanadium		25.00	26.18	105	80-120	73-127	
Zinc		25.00	27.49	110	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-0297 EPA 7471A Total EPA 7471A

Page 3 of 4

06/04/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepare	ed Date Analyzed	LCS Batch Number
099-16-272-288	LCS	Solid	Mercury 05	06/05/14	06/05/14 19:43	3 140605L01
Parameter		Spike Added	Conc. Recove	ered LCS %	Rec. %Re	c. CL Qualifiers
Mercury		0.8350	0.9080	109	85-12	21

RPD: Relative Percent Difference. CL: Control Limits

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

14-06-0297 EPA 3540C EPA 8082

06/04/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 4 of 4

Quality Control Sample ID	Туре	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
099-02-003-263	LCS	Solid	GC 58 0	06/04/14	06/06/14 23:16	140604L16
Parameter		Spike Added	Conc. Recovered	d LCS %Re	ec. %Rec	. CL Qualifiers
Aroclor-1016		100.0	80.94	81	50-13	5
Aroclor-1260		100.0	129.3	129	60-130	0

Sample Analysis Summary Report

Work Order: 14-06-0297	Work Order: 14-06-0297							
<u>Method</u>	Extraction	Chemist ID	Instrument	Analytical Location				
EPA 6010B	EPA 3050B	469	ICP 7300	1				
EPA 7471A	EPA 7471A Total	915	Mercury 05	1				
EPA 8015B (M)	EPA 3550B	847	GC 48	1				
EPA 8082	EPA 3540C	842	GC 58	1				

Glossary of Terms and Qualifiers

Work Order: 14-06-0297 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- concentration by a factor of four or greater.

 SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

CHAIN-OF-CUSTODY RECORD	8		6 6	NB 31351	
PROJECT NAME: FORMER FECTION COPROJECT NUMBER: 01.01, 270.030	I (ast Mate Facily)	CLIENT INFORMATION: ANE	DATE: $6 - 4 - 14$ REPORTING REQUIREMENTS:	PAGE OF	
∵ †					
开				/670-on-sı	
SAMPLE SHIPMENT METHOD: ACCOUNTING	LABORATORY CONTAGII WALL LABORATORY PHONE NUMBER:		GEOTRACKER REQUIRED	YES	
PI FRS (SIGNATURE):	S ANALYSES	SES			
Monterly Chominsky	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ier (W), Other (O)	iners	
DATE TIME NUMBER	8 A93 8 A93 6 9H	O E	CONTAINER oil (S), Was apor (V), o	isooled Contact Contac	AL S
1# 8001 h	3×	1,07	olngs iar S	N —	
1009	×				
ļ	× ×		S	- X	
	×××		5)	- ×	
1012 #1103	× ×		S	 ×	
1013 #1104	× ×		2	×	
\dashv	× ×		5	X	T
	× × ×		\(\sigma\)	 ×	
_	×,		∧ (× ,	
1	×.		7 (×	
	×××		70		
99	× ?		7 0	 ×>	
1 H H	×> ×>		700	×	
1000 # 1001)()		
BY: DATE	ı	DATE TIME TOTAL NUMBER OF CONTAINERS.	CONTAINERS:	(18)	
	SIGNATORE:	SAMPLING COMMENTS:	ITS:	9	
The state of the s	ME: MARAGUEZ	14/ 1520 Phase	A		
- Raw S	SIGNATURE, IN IN IN (
MANGUEZ 6/1/	1653 PRINTEDNAMEN CC COMPANY: CCT	16.55 July 16.55		**************************************	
4	SIGNATURE:	121 Inno	121 Innovation Drive, Suite 200		
PRINTED NAME: COMPANY:	PRINTED NAME: COMPANY:	Irvine, Califor Tel 949.642.0245	Irvine, California 92617-3094 19.642.0245 Fax 949.642.4474	Swed	

11

eturn to Contents

[1		T			T T	 П		ТТ	 T		T T			730		\neg
NB 31352 PAGE 2 OF 2	Abou	YES NO		oled S/MSD of Containers	PN -	- ×					8	12)			Same	
DATE: (,-11-114)	70 1	GEOTRACKER REQUIRED	SIE STECITIO GLOBALID NO.	ONTAIN TAIN II (S), Water (W), por (V), or Other (O) lered	II∃ SV V				-			ONTAINERS:	s. Phase I			121 Innovation Drive, Suite 200 Irvine, California 92617-3094 49 642 0245 Fax 949 642 4474	1
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CLIENT/MFORMATION: AMEC				1115	J' I						DATE TIME TOTAL NUMBER OF CONTAINERS:	SAMPLING COMMENTS:		14 1633	121 Innovation Irvine, Califor Tel 949 642 0245	151 0.10.10.10.10.10.10.10.10.10.10.10.10.10
Cact Plate, Facilis	ADDRESS:	LABORATORY CONTROL WCL K LABORATORY PHONE NUMBER:	ANALYSES	2108 A9	1 ×	×						VED BY:	SIGNATURE (142) A PRINTED KAME:	COMPANY FC I SIGNATURED IN MUY (C. 6)	COMPANY: CCT	SIGNATURE: PRINTED NAME:	COMPANY:
TODY RECORD	170030 Contan	#K	(SIGNATI IRE):		NOMBER #1111	#115						DATE TIME	The Contraction of the second		1/8/)
CHAIN-OF-CUSTODY RECORD	162	TURNAROUND TIME: 48 SAMPLE SHIPMENT METHOD: 1015 COUTLET	SANDIEBS	Perfer	DAIE IIME							RELINQUISHED BY	SIGNATURE: PRINTED NAME:	SIGNATURE:	COMPANY: ECE	AME:	COMPANY:

Return to Contents

eurofins

WORK ORDER #: 14-06- 2 2 9

SAMPLE RECEIPT FORM Cooler / of /

CLIENT: AME C	DATE:	06/4/	14_
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozent Temperature		ediment/tissue	
☐ Sample(s) outside temperature criteria but received on ice/chilled on same da		ing.	
 □ Received at ambient temperature, placed on ice for transport by Co Ambient Temperature: □ Air □ Filter 	urier.	Checked by	: <u>678</u>
CUSTODY SEALS INTACT: Cooler	□ N/A	Checked by Checked by	
o, == 0 0 0	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	Z		
COC document(s) received complete	Z		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sampler's name indicated on COC			
Sample container label(s) consistent with COC	Ø		
Sample container(s) intact and good condition	7		
Proper containers and sufficient volume for analyses requested	Þ		
Analyses received within holding time	Ø		
Aqueous samples received within 15-minute holding time			
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfides ☐ Dissolved Oxygen			P
Proper preservation noted on COC or sample container			
Volatile analysis container(s) free of headspace			Ø
Tedlar bag(s) free of condensation CONTAINER TYPE:			1
Solid: ☑4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores	s [®] □Terra	ıCores [®] □	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp			11AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs			
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na ₂ □			N
Air: Tedlar® Canister Other: Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Env Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ +NaC ₃	velope l	/Checked by: Reviewed by: Scanned by:	659

Calscience

Supplemental Report 1

The original report has been revised/corrected.

WORK ORDER NUMBER: 14-06-0415

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate Facility /

0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

Morning

Approved for release on 06/13/2014 by:

Stephen Nowak Project Manager

Email your PM >

ResultLink >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

8

Contents

40

Client Project Name:	Former Pechiney Cast Plate Facility / 0106270030
Work Order Number:	14-06-0415

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA 8015B (M) C6-C44 (Solid). 4.2 EPA 6010B ICP Metals (Solid). 4.3 EPA 6010B/7471A CAC Title 22 Metals (Solid). 4.4 EPA 7471A Mercury (Solid). 4.5 EPA 8082 PCB Aroclors (Solid).	9 16 17 24 25
5	Quality Control Sample Data5.1 MS/MSD5.2 LCS/LCSD	30 30 34
6	Sample Analysis Summary	38
7	Glossary of Terms and Qualifiers	39

Work Order Narrative

Work Order: 14-06-0415 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 06/05/14. They were assigned to Work Order 14-06-0415.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0415

Project Name: Former Pechiney Cast Plate Facility /

0106270030

PO Number:

Date/Time 06/05/14 17:15

Received:

10 Number of Containers:

Attn: Linda Conlan

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
#1116	14-06-0415-1	06/05/14 09:24	1	Solid
#1117	14-06-0415-2	06/05/14 09:25	1	Solid
#1118	14-06-0415-3	06/05/14 09:26	1	Solid
#1119	14-06-0415-4	06/05/14 09:28	1	Solid
#1120	14-06-0415-5	06/05/14 09:29	1	Solid
#1121	14-06-0415-6	06/05/14 09:29	1	Solid
#1122	14-06-0415-7	06/05/14 13:29	1	Solid
#1123	14-06-0415-8	06/05/14 13:40	1	Solid
#1124	14-06-0415-9	06/05/14 13:55	1	Solid
755-IV-F/F-SS-002	14-06-0415-10	06/05/14 14:16	1	Solid

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0415

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

06/05/14 Received:

Attn: Linda Conlan Page 1 of 4

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1116 (14-06-0415-1)						
,				,	===	5 54.0055
Arsenic	1.08		0.728	mg/kg	EPA 6010B	EPA 3050B
Barium	109		0.485	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.330		0.243	mg/kg	EPA 6010B	EPA 3050B
Chromium	13.9		0.243	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.1		0.243	mg/kg	EPA 6010B	EPA 3050B
Copper	14.6		0.485	mg/kg	EPA 6010B	EPA 3050B
Lead	1.67		0.485	mg/kg	EPA 6010B	EPA 3050B
Nickel	10.4		0.243	mg/kg	EPA 6010B	EPA 3050B
Vanadium	31.7		0.243	mg/kg	EPA 6010B	EPA 3050B
Zinc	50.5		0.971	mg/kg	EPA 6010B	EPA 3050B
#1117 (14-06-0415-2)						
Arsenic	1.38		0.750	mg/kg	EPA 6010B	EPA 3050B
Barium	137		0.500	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.326		0.250	mg/kg	EPA 6010B	EPA 3050B
Chromium	17.8		0.250	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.7		0.250	mg/kg	EPA 6010B	EPA 3050B
Copper	24.6		0.500	mg/kg	EPA 6010B	EPA 3050B
Lead	30.4		0.500	mg/kg	EPA 6010B	EPA 3050B
Nickel	13.4		0.250	mg/kg	EPA 6010B	EPA 3050B
Vanadium	33.0		0.250	mg/kg	EPA 6010B	EPA 3050B
Zinc	110		1.00	mg/kg	EPA 6010B	EPA 3050B
Aroclor-1248	120		50	ug/kg	EPA 8082	EPA 3540C

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0415

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

06/05/14 Received:

Attn: Linda Conlan Page 2 of 4

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
#1118 (14-06-0415-3)						
Antimony	27.6		0.735	mg/kg	EPA 6010B	EPA 3050B
Arsenic	2.43		0.735	mg/kg	EPA 6010B	EPA 3050B
Barium	245		0.490	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.369		0.245	mg/kg	EPA 6010B	EPA 3050B
Chromium	20.9		0.245	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.3		0.245	mg/kg	EPA 6010B	EPA 3050B
Copper	156		0.490	mg/kg	EPA 6010B	EPA 3050B
Lead	613		0.490	mg/kg	EPA 6010B	EPA 3050B
Nickel	18.8		0.245	mg/kg	EPA 6010B	EPA 3050B
Vanadium	35.7		0.245	mg/kg	EPA 6010B	EPA 3050B
Zinc	297		0.980	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.0942		0.0862	mg/kg	EPA 7471A	EPA 7471A Total
C23-C24	43		5.1	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	39		5.1	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	39		5.1	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	18		5.1	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	8.4		5.1	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	150		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
#1119 (14-06-0415-4)						
Arsenic	0.933		0.725	mg/kg	EPA 6010B	EPA 3050B
Barium	143		0.483	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.334		0.242	mg/kg	EPA 6010B	EPA 3050B
Chromium	16.0		0.242	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.4		0.242	mg/kg	EPA 6010B	EPA 3050B
Copper	22.0		0.483	mg/kg	EPA 6010B	EPA 3050B
Lead	12.5		0.483	mg/kg	EPA 6010B	EPA 3050B
Nickel	12.7		0.242	mg/kg	EPA 6010B	EPA 3050B
Vanadium	32.9		0.242	mg/kg	EPA 6010B	EPA 3050B
Zinc	116		0.966	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0415

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

06/05/14 Received:

Attn: Linda Conlan Page 3 of 4

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1120 (14-06-0415-5)						
Arsenic	2.01		0.739	mg/kg	EPA 6010B	EPA 3050B
Barium	536		0.493	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.293		0.246	mg/kg	EPA 6010B	EPA 3050B
Chromium	18.1		0.246	mg/kg	EPA 6010B	EPA 3050B
Cobalt	9.53		0.246	mg/kg	EPA 6010B	EPA 3050B
Copper	1060		0.493	mg/kg	EPA 6010B	EPA 3050B
Lead	679		0.493	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.720		0.246	mg/kg	EPA 6010B	EPA 3050B
Nickel	17.3		0.246	mg/kg	EPA 6010B	EPA 3050B
Vanadium	29.6		0.246	mg/kg	EPA 6010B	EPA 3050B
Zinc	633		0.985	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.165		0.0806	mg/kg	EPA 7471A	EPA 7471A Total
C21-C22	20		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C23-C24	47		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	60		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	67		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	27		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	15		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C41-C44	5.9		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	240		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
#1121 (14-06-0415-6)						
Arsenic	1.56		0.743	mg/kg	EPA 6010B	EPA 3050B
Barium	129		0.495	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.352		0.248	mg/kg	EPA 6010B	EPA 3050B
Chromium	17.5		0.248	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.8		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper	20.4		0.495	mg/kg	EPA 6010B	EPA 3050B
Lead	11.1		0.495	mg/kg	EPA 6010B	EPA 3050B
Nickel	16.2		0.248	mg/kg	EPA 6010B	EPA 3050B
Vanadium	32.4		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc	64.7		0.990	mg/kg	EPA 6010B	EPA 3050B
C25-C28	5.6		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	7.0		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	21		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
Aroclor-1248	150		51	ug/kg	EPA 8082	EPA 3540C
#1123 (14-06-0415-8)				- -		
Arsenic	1.86		0.721	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-0415

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 06/05/14

Attn: Linda Conlan Page 4 of 4

Client SampleID Analyte	Result	<u>Qualifiers</u>	<u>RL</u>	<u>Units</u>	Method	Extraction
#1124 (14-06-0415-9)	2.40		0.705		EDA COAOD	EDA 2050D
Arsenic	3.12		0.735	mg/kg	EPA 6010B	EPA:

Subcontracted analyses, if any, are not included in this summary.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/05/14 14-06-0415 EPA 3550B EPA 8015B (M)

Units: mg/kg
Page 1 of 7

Project: Former Pechiney Cast Plate Facility / 0106270030

1 ago 1 oi

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1116	14-06-0415-1-A	06/05/14 09:24	Solid	GC 48	06/06/14	06/06/14 17:19	140606B01A
Parameter		Result	RL		DF	Qua	alifiers
C6		ND	4.9		1.00		
C7		ND	4.9		1.00		
C8		ND	4.9		1.00		
C9-C10		ND	4.9		1.00		
C11-C12		ND	4.9		1.00		
C13-C14		ND	4.9		1.00		
C15-C16		ND	4.9		1.00		
C17-C18		ND	4.9		1.00		
C19-C20		ND	4.9		1.00		
C21-C22		ND	4.9		1.00		
C23-C24		ND	4.9		1.00		
C25-C28		ND	4.9		1.00		
C29-C32		ND	4.9		1.00		
C33-C36		ND	4.9		1.00		
C37-C40		ND	4.9		1.00		
C41-C44		ND	4.9		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		76	61-	145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/05/14 14-06-0415 EPA 3550B EPA 8015B (M)

mg/kg

Units:

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1117	14-06-0415-2-A	06/05/14 09:25	Solid	GC 48	06/06/14	06/06/14 17:35	140606B01A
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
C6		ND	5.0	1	1.00		
C7		ND	5.0	1	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0	1	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0	1	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0	1	1.00		
C29-C32		ND	5.0	1	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0	1	1.00		
C41-C44		ND	5.0	1	1.00		
C6-C44 Total		ND	5.0	1	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		74	61-	145			

Page 3 of 7

Analytical Report

AMEC Environment & Infrastructure Date Received: 06/05/14
121 Innovation Drive, Suite 200 Work Order: 14-06-0415
Irvine, CA 92617-3094 Preparation: EPA 3550B
Method: EPA 8015B (M)

Units: mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1118		14-06-0415-3-A	06/05/14 09:26	Solid	GC 48	06/06/14	06/06/14 17:51	140606B01A
Comment(s):	- The total concentration i	includes individual ca	rbon range cond	centrations (es	timated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
C6			ND	5.1		1.00		
C7			ND	5.1		1.00		
C8			ND	5.1		1.00		
C9-C10			ND	5.1		1.00		
C11-C12			ND	5.1		1.00		
C13-C14			ND	5.1		1.00		
C15-C16			ND	5.1		1.00		
C17-C18			ND	5.1		1.00		
C19-C20			ND	5.1		1.00		
C21-C22			ND	5.1		1.00		
C23-C24			43	5.1		1.00		
C25-C28			39	5.1		1.00		
C29-C32			39	5.1		1.00		
C33-C36			18	5.1		1.00		
C37-C40			8.4	5.1		1.00		
C41-C44			ND	5.1		1.00		
C6-C44 Total			150	5.0		1.00		
Surrogate			Rec. (%)	Cor	ntrol Limits	Qualifiers		
n-Octacosane			63		145	<u> </u>		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/05/14 14-06-0415 EPA 3550B EPA 8015B (M)

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 4 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1119	14-06-0415-4-A	06/05/14 09:28	Solid	GC 48	06/06/14	06/06/14 18:07	140606B01A
<u>Parameter</u>		Result	RL		DF	Qua	alifiers
C6		ND	4.9		1.00		
C7		ND	4.9		1.00		
C8		ND	4.9		1.00		
C9-C10		ND	4.9		1.00		
C11-C12		ND	4.9		1.00		
C13-C14		ND	4.9		1.00		
C15-C16		ND	4.9		1.00		
C17-C18		ND	4.9		1.00		
C19-C20		ND	4.9		1.00		
C21-C22		ND	4.9		1.00		
C23-C24		ND	4.9		1.00		
C25-C28		ND	4.9		1.00		
C29-C32		ND	4.9		1.00		
C33-C36		ND	4.9		1.00		
C37-C40		ND	4.9		1.00		
C41-C44		ND	4.9		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		67	61-	145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: 06/05/14 14-06-0415 EPA 3550B

Method:

EPA 8015B (M)

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 5 of 7

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1120		14-06-0415-5-A	06/05/14 09:29	Solid	GC 48	06/06/14	06/06/14 18:23	140606B01A
Comment(s):	- The total concentration i	ncludes individual car	rbon range cond	centrations (e:	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	RL	=	<u>DF</u>	Qua	<u>llifiers</u>
C6			ND	5.0)	1.00		
C7			ND	5.0)	1.00		
C8			ND	5.0)	1.00		
C9-C10			ND	5.0)	1.00		
C11-C12			ND	5.0)	1.00		
C13-C14			ND	5.0)	1.00		
C15-C16			ND	5.0)	1.00		
C17-C18			ND	5.0)	1.00		
C19-C20			ND	5.0)	1.00		
C21-C22			20	5.0)	1.00		
C23-C24			47	5.0)	1.00		
C25-C28			60	5.0)	1.00		
C29-C32			67	5.0)	1.00		
C33-C36			27	5.0)	1.00		
C37-C40			15	5.0)	1.00		
C41-C44			5.9	5.0)	1.00		
C6-C44 Total			240	5.0)	1.00		
<u>Surrogate</u>			Rec. (%)	<u>Cc</u>	ontrol Limits	Qualifiers		
n-Octacosane			69	61	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/05/14 14-06-0415 EPA 3550B

Method: EPA 8015B (M) Units: mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 6 of 7

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1121		14-06-0415-6-A	06/05/14 09:29	Solid	GC 48	06/06/14	06/06/14 18:39	140606B01A
Comment(s):	- The total concentration i	ncludes individual car	bon range cond	entrations (es	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	RL	=	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
C6			ND	4.9	9	1.00		
C7			ND	4.9	9	1.00		
C8			ND	4.9	9	1.00		
C9-C10			ND	4.9	9	1.00		
C11-C12			ND	4.9	9	1.00		
C13-C14			ND	4.9	9	1.00		
C15-C16			ND	4.9	9	1.00		
C17-C18			ND	4.9	9	1.00		
C19-C20			ND	4.9	9	1.00		
C21-C22			ND	4.9	9	1.00		
C23-C24			ND	4.9	9	1.00		
C25-C28			5.6	4.9	9	1.00		
C29-C32			7.0	4.9	9	1.00		
C33-C36			ND	4.9	9	1.00		
C37-C40			ND	4.9	9	1.00		
C41-C44			ND	4.9	9	1.00		
C6-C44 Total			21	5.0)	1.00		
<u>Surrogate</u>			Rec. (%)	Co	ontrol Limits	Qualifiers		
n-Octacosane			69	61	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/05/14 14-06-0415 EPA 3550B EPA 8015B (M)

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 7 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-945	N/A	Solid	GC 48	06/06/14	06/06/14 12:17	140606B01A
<u>Parameter</u>	·	Result	RL	•	<u>DF</u>	Qua	alifiers
C6		ND	5.0		1.00		
C7		ND	5.0		1.00		
C8		ND	5.0		1.00		
C9-C10		ND	5.0		1.00		
C11-C12		ND	5.0		1.00		
C13-C14		ND	5.0		1.00		
C15-C16		ND	5.0		1.00		
C17-C18		ND	5.0		1.00		
C19-C20		ND	5.0		1.00		
C21-C22		ND	5.0		1.00		
C23-C24		ND	5.0		1.00		
C25-C28		ND	5.0		1.00		
C29-C32		ND	5.0		1.00		
C33-C36		ND	5.0		1.00		
C37-C40		ND	5.0		1.00		
C41-C44		ND	5.0		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
n-Octacosane		78	61-	145			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure

Date Received:

Work Order:

14-06-0415

Irvine, CA 92617-3094

Preparation:

EPA 3050B

Method:

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page	1	of	1
------	---	----	---

Method Blank	097-01-002-18455	N/A	Solid	ICP 7300	06/05/14	06/06/14	1406051 05
Arsenic		3.12	C	.735	0.980		
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
#1124	14-06-0415-9-A	06/05/14 13:55	Solid	ICP 7300	06/05/14	06/10/14 14:24	140605L05
Arsenic		1.86	C	.721	0.962		
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
#1123	14-06-0415-8-A	06/05/14 13:40	Solid	ICP 7300	06/05/14	06/10/14 14:23	140605L05
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID

Method Blank	097-01-002-18455	N/A	Solid	ICP 7300	06/05/14	06/06/14 18:19	140605L05
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Arsenic		ND	0	.750	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/05/14 14-06-0415 EPA 3050B EPA 6010B

Units: mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1116	14-06-0415-1-A	06/05/14 09:24	Solid	ICP 7300	06/05/14	06/06/14 20:11	140605L05
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().728	0.971		
Arsenic		1.08	().728	0.971		
Barium		109	().485	0.971		
Beryllium		0.330	(0.243	0.971		
Cadmium		ND	().485	0.971		
Chromium		13.9	().243	0.971		
Cobalt		10.1	().243	0.971		
Copper		14.6	().485	0.971		
Lead		1.67	().485	0.971		
Molybdenum		ND	().243	0.971		
Nickel		10.4	().243	0.971		
Selenium		ND	().728	0.971		
Silver		ND	(0.243	0.971		
Thallium		ND	().728	0.971		
Vanadium		31.7	().243	0.971		
Zinc		50.5	().971	0.971		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/05/14 14-06-0415 EPA 3050B

EPA 6010B mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1117	14-06-0415-2-A	06/05/14 09:25	Solid	ICP 7300	06/05/14	06/06/14 20:12	140605L05
<u>Parameter</u>		Result]	RL	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.750	1.00		
Arsenic		1.38	(0.750	1.00		
Barium		137	(0.500	1.00		
Beryllium		0.326	(0.250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		17.8	(0.250	1.00		
Cobalt		10.7	(0.250	1.00		
Copper		24.6	(0.500	1.00		
Lead		30.4	(0.500	1.00		
Molybdenum		ND	(0.250	1.00		
Nickel		13.4	(0.250	1.00		
Selenium		ND	(0.750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	(0.750	1.00		
Vanadium		33.0	(0.250	1.00		
Zinc		110		1.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/05/14 14-06-0415 EPA 3050B EPA 6010B

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1118	14-06-0415-3-A	06/05/14 09:26	Solid	ICP 7300	06/05/14	06/06/14 20:13	140605L05
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		27.6	(0.735	0.980		
Arsenic		2.43	(0.735	0.980		
Barium		245	(0.490	0.980		
Beryllium		0.369	(0.245	0.980		
Cadmium		ND	(0.490	0.980		
Chromium		20.9	(0.245	0.980		
Cobalt		12.3	(0.245	0.980		
Copper		156	(0.490	0.980		
Lead		613	(0.490	0.980		
Molybdenum		ND	(0.245	0.980		
Nickel		18.8	(0.245	0.980		
Selenium		ND	(0.735	0.980		
Silver		ND	(0.245	0.980		
Thallium		ND	(0.735	0.980		
Vanadium		35.7	(0.245	0.980		
Zinc		297	(0.980	0.980		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/05/14 14-06-0415 EPA 3050B

Method: EPA 6010B Units: mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 4 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1119	14-06-0415-4-A	06/05/14 09:28	Solid	ICP 7300	06/05/14	06/06/14 20:19	140605L05
Parameter		<u>Result</u>	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.725	0.966		
Arsenic		0.933	(0.725	0.966		
Barium		143	(0.483	0.966		
Beryllium		0.334	().242	0.966		
Cadmium		ND	(0.483	0.966		
Chromium		16.0	(0.242	0.966		
Cobalt		12.4	(0.242	0.966		
Copper		22.0	(0.483	0.966		
Lead		12.5	(0.483	0.966		
Molybdenum		ND	(0.242	0.966		
Nickel		12.7	().242	0.966		
Selenium		ND	().725	0.966		
Silver		ND	().242	0.966		
Thallium		ND	().725	0.966		
Vanadium		32.9	(0.242	0.966		
Zinc		116	(0.966	0.966		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/05/14 14-06-0415 EPA 3050B

EPA 6010B mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 5 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1120	14-06-0415-5-A	06/05/14 09:29	Solid	ICP 7300	06/05/14	06/06/14 20:20	140605L05
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	(0.739	0.985		
Arsenic		2.01	(0.739	0.985		
Barium		536	(0.493	0.985		
Beryllium		0.293	(0.246	0.985		
Cadmium		ND	(0.493	0.985		
Chromium		18.1	(0.246	0.985		
Cobalt		9.53	(0.246	0.985		
Copper		1060	(0.493	0.985		
Lead		679	(0.493	0.985		
Molybdenum		0.720	(0.246	0.985		
Nickel		17.3	(0.246	0.985		
Selenium		ND	(0.739	0.985		
Silver		ND	(0.246	0.985		
Thallium		ND	(0.739	0.985		
Vanadium		29.6	(0.246	0.985		
Zinc		633	(0.985	0.985		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

14-06-0415 EPA 3050B EPA 6010B

mg/kg

06/05/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 6 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1121	14-06-0415-6-A	06/05/14 09:29	Solid	ICP 7300	06/05/14	06/06/14 20:21	140605L05
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	(0.743	0.990		
Arsenic		1.56	(0.743	0.990		
Barium		129	(0.495	0.990		
Beryllium		0.352	(0.248	0.990		
Cadmium		ND	(0.495	0.990		
Chromium		17.5	(0.248	0.990		
Cobalt		12.8	(0.248	0.990		
Copper		20.4	(0.495	0.990		
Lead		11.1	(0.495	0.990		
Molybdenum		ND	(0.248	0.990		
Nickel		16.2	(0.248	0.990		
Selenium		ND	(0.743	0.990		
Silver		ND	(0.248	0.990		
Thallium		ND	(0.743	0.990		
Vanadium		32.4	(0.248	0.990		
Zinc		64.7	(0.990	0.990		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/05/14 14-06-0415 EPA 3050B

> EPA 6010B mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 7 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-18455	N/A	Solid	ICP 7300	06/05/14	06/06/14 18:19	140605L05
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qualifiers	
Antimony		ND	().750	1.00		
Arsenic		ND	().750	1.00		
Barium		ND	().500	1.00		
Beryllium		ND	().250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		ND	(0.250	1.00		
Cobalt		ND	().250	1.00		
Copper		ND	(0.500	1.00		
Lead		ND	(0.500	1.00		
Molybdenum		ND	().250	1.00		
Nickel		ND	(0.250	1.00		
Selenium		ND	().750	1.00		
Silver		ND	().250	1.00		
Thallium		ND	().750	1.00		
Vanadium		ND	(0.250	1.00		
Zinc		ND	1	1.00	1.00		

AMEC Environment & Infrastructure

Date Received:

06/05/14

121 Innovation Drive, Suite 200

Work Order:

14-06-0415

Irvine, CA 92617-3094

Preparation:

Method:

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received:

06/05/14

Work Order:

14-06-0415

EPA 7471A Total

Method:

Units:

mg/kg

Page 1 of 1

r rejecti i cirrici i cermie) e	sast riate rasmity 7 5 100	_, 0000					xgo . c
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
#1116	14-06-0415-1-A	06/05/14 09:24	Solid	Mercury 05	06/06/14	06/06/14 16:31	140606L01
Parameter Parameter		Result		RL	<u>DF</u>	<u>Qualifiers</u>	
Mercury		ND		0.0806	1.00		
#1117	14-06-0415-2-A	06/05/14 09:25	Solid	Mercury 05	06/06/14	06/06/14 16:33	140606L01
Parameter Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0833	1.00		
#1118	14-06-0415-3-A	06/05/14 09:26	Solid	Mercury 05	06/06/14	06/06/14 16:36	140606L01
Parameter Parameter		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		0.0942		0.0862	1.00		
#1119	14-06-0415-4-A	06/05/14 09:28	Solid	Mercury 05	06/06/14	06/06/14 16:38	140606L01
Parameter Parameter		Result		RL	<u>DF</u>	<u>Qualifiers</u>	
Mercury		ND		0.0847	1.00		
#1120	14-06-0415-5-A	06/05/14 09:29	Solid	Mercury 05	06/06/14	06/06/14 16:40	140606L01
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury		0.165		0.0806	1.00		
#1121	14-06-0415-6-A	06/05/14 09:29	Solid	Mercury 05	06/06/14	06/06/14 16:42	140606L01
Parameter Parame		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0833	1.00		
Method Blank	099-16-272-291	N/A	Solid	Mercury 05	06/06/14	06/06/14 15:55	140606L01
Parameter Parame		Result		RL	<u>DF</u>	Qua	<u>alifiers</u>
Mercury		ND		0.0833	1.00		
•							

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/05/14 14-06-0415 EPA 3540C

Units:

EPA 8082 ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1116	14-06-0415-1-A	06/05/14 09:24	Solid	GC 31	06/05/14	06/07/14 04:14	140605L24
Parameter		Result	<u>RL</u>	•	<u>DF</u>	Qua	alifiers
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
<u>Surrogate</u>		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
Decachlorobiphenyl		93	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		100	50-	130			

#1117	14-06-0415-2-A	06/05/14 09:25	Solid GC 31	06/05/14	06/07/14 04:33	140605L24
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qua	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		120	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		91	60-125			
2,4,5,6-Tetrachloro-m-Xylene		94	50-130			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

14-06-0415 EPA 3540C EPA 8082 ug/kg

06/05/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1118	14-06-0415-3-A	06/05/14 09:26	Solid	GC 31	06/05/14	06/07/14 04:52	140605L24
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	lifiers
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Cor	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		107	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		91	50-	130			

#1119	14-06-0415-4-A	06/05/14 09:28	Solid GC 31	06/05/14	06/07/14 05:11	140605L24
Parameter		Result	<u>RL</u>	<u>DF</u>	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		98	60-125			
2,4,5,6-Tetrachloro-m-Xylene		96	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/05/14 14-06-0415 EPA 3540C EPA 8082

ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1120	14-06-0415-5-A	06/05/14 09:29	Solid	GC 31	06/05/14	06/07/14 05:31	140605L24
Parameter		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Co	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		105	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		94	50-	130			

#1121	14-06-0415-6-A	06/05/14 09:29	Solid GC 31	06/05/14	06/07/14 05:50	140605L24
<u>Parameter</u>		Result	<u>RL</u>	DF	Qua	alifiers
Aroclor-1016		ND	51	1.00		
Aroclor-1221		ND	51	1.00		
Aroclor-1232		ND	51	1.00		
Aroclor-1242		ND	51	1.00		
Aroclor-1248		150	51	1.00		
Aroclor-1254		ND	51	1.00		
Aroclor-1260		ND	51	1.00		
Aroclor-1262		ND	51	1.00		
Aroclor-1268		ND	51	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		99	60-125			
2,4,5,6-Tetrachloro-m-Xylene		96	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/05/14 14-06-0415 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 4 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1122	14-06-0415-7-A	06/05/14 13:29	Solid	GC 31	06/05/14	06/07/14 06:09	140605L24
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	lifiers
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Cont	trol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		101	60-1	25			
2,4,5,6-Tetrachloro-m-Xylene		104	50-1	30			

755-IV-F/F-SS-002	14-06-0415-10-A	06/05/14 14:16	Solid G	C 31 06/05/14	06/07/14 06:28	140605L24
Parameter		Result	RL	<u>DF</u>	Qu	<u>alifiers</u>
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Contro	l Limits Qualifiers	i	
Decachlorobiphenyl		103	60-125	5		
2,4,5,6-Tetrachloro-m-Xylene		105	50-130)		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

14-06-0415 EPA 3540C EPA 8082 ug/kg

06/05/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 5 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-02-003-262	N/A	Solid	GC 31	06/05/14	06/07/14 02:58	140605L24
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		109	60-	-125			
2,4,5,6-Tetrachloro-m-Xylene		101	50-	-130			

AMEC Environment & Infrastructure

Date Received:

Work Order:

14-06-0415

Irvine, CA 92617-3094

Preparation:

EPA 3550B

Method:

EPA 8015B (M)

Project: Former Pechiney Cast Plate Facility / 0106270030 Page 1 of 4

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
14-06-0418-1	Sample		Solid	GC	48	06/06/14	06/06/14	13:20	140606S01	
14-06-0418-1	Matrix Spike		Solid	GC	48	06/06/14	06/06/14	12:49	140606S01	
14-06-0418-1	Matrix Spike I	Duplicate	Solid	GC	48	06/06/14	06/06/14	13:05	140606S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	ND	400.0	314.7	79	318.2	80	55-133	1	0-30	

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/05/14 14-06-0415 EPA 3050B EPA 6010B

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 4

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepare	d Date Ana	lyzed	MS/MSD Ba	tch Number
14-06-0418-1	Sample		Solid	ICP	7300	06/05/14	06/06/14	18:24	140605S05	
14-06-0418-1	Matrix Spike		Solid	ICP	7300	06/05/14	06/06/14	18:25	140605S05	
14-06-0418-1	Matrix Spike	Duplicate	Solid	ICP	7300	06/05/14	06/06/14	18:26	140605S05	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	9.061	36	8.937	36	50-115	1	0-20	3
Arsenic	3.350	25.00	27.16	95	27.72	97	75-125	2	0-20	
Barium	186.8	25.00	197.3	4X	206.7	4X	75-125	4X	0-20	Q
Beryllium	0.6216	25.00	26.49	103	26.79	105	75-125	1	0-20	
Cadmium	ND	25.00	25.06	100	25.19	101	75-125	1	0-20	
Chromium	22.74	25.00	48.08	101	50.02	109	75-125	4	0-20	
Cobalt	9.878	25.00	34.46	98	35.85	104	75-125	4	0-20	
Copper	19.25	25.00	44.35	100	46.18	108	75-125	4	0-20	
Lead	2.871	25.00	26.86	96	27.38	98	75-125	2	0-20	
Molybdenum	1.221	25.00	22.53	85	23.27	88	75-125	3	0-20	
Nickel	11.45	25.00	35.13	95	37.08	103	75-125	5	0-20	
Selenium	ND	25.00	17.71	71	19.46	78	75-125	9	0-20	3
Silver	ND	12.50	12.53	100	12.66	101	75-125	1	0-20	
Thallium	ND	25.00	19.15	77	19.84	79	75-125	4	0-20	
Vanadium	45.41	25.00	71.62	105	71.85	106	75-125	0	0-20	
Zinc	78.37	25.00	102.7	97	104.4	104	75-125	2	0-20	

AMEC Environment & Infrastructure

Date Received:

Work Order:

14-06-0415

Irvine, CA 92617-3094

Preparation:

Method:

Date Received:

06/05/14

Preparation:

EPA 7471A Total

Method:

EPA 7471A

Project: Former Pechiney Cast Plate Facility / 0106270030 Page 3 of 4

Quality Control Sample ID	Type		Matrix	Instr	ument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
14-06-0419-6	Sample		Solid	Mer	cury 05	06/06/14	06/06/14	16:00	140606S01	
14-06-0419-6	Matrix Spike		Solid	Mer	cury 05	06/06/14	06/06/14	16:02	140606S01	
14-06-0419-6	Matrix Spike	Duplicate	Solid	Mer	cury 05	06/06/14	06/06/14	16:04	140606S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.8350	0.9549	114	0.9388	112	71-137	2	0-14	

AMEC Environment & Infrastructure Date Received: 06/05/14
121 Innovation Drive, Suite 200 Work Order: 14-06-0415
Irvine, CA 92617-3094 Preparation: EPA 3540C
Method: EPA 8082

Project: Former Pechiney Cast Plate Facility / 0106270030 Page 4 of 4

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
#1120	Sample		Solid	GC	31	06/05/14	06/07/14	05:31	140605S24	
#1120	Matrix Spike		Solid	GC	31	06/05/14	06/07/14	03:36	140605S24	
#1120	Matrix Spike	Duplicate	Solid	GC	31	06/05/14	06/07/14	03:55	140605S24	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Aroclor-1016	ND	100.0	95.10	95	95.67	96	50-135	1	0-25	
Aroclor-1260	ND	100.0	96.07	96	92.29	92	50-135	4	0-25	

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-0415 EPA 3550B EPA 8015B (M)

06/05/14

Page 1 of 4

Project: Former Pechiney Cast Plate Facility / 0106270030

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-490-945	LCS	Solid	GC 48	06/06/14	06/06/14 12:33	140606B01A
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
TPH as Diesel		400.0	322.6	81	75-12	3

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

14-06-0415 EPA 3050B EPA 6010B

06/05/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 4

Quality Control Sample ID	Type	Matrix	Instrumen	t Date Prep	ared Date Ana	lyzed LCS Bato	h Number
097-01-002-18455	LCS	Solid	ICP 7300	06/05/14	06/06/14	18:23 140605L0	05
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		25.00	24.82	99	80-120	73-127	
Arsenic		25.00	23.94	96	80-120	73-127	
Barium		25.00	25.36	101	80-120	73-127	
Beryllium		25.00	24.49	98	80-120	73-127	
Cadmium		25.00	25.53	102	80-120	73-127	
Chromium		25.00	25.24	101	80-120	73-127	
Cobalt		25.00	27.65	111	80-120	73-127	
Copper		25.00	25.71	103	80-120	73-127	
Lead		25.00	25.18	101	80-120	73-127	
Molybdenum		25.00	25.42	102	80-120	73-127	
Nickel		25.00	26.43	106	80-120	73-127	
Selenium		25.00	22.40	90	80-120	73-127	
Silver		12.50	12.55	100	80-120	73-127	
Thallium		25.00	26.59	106	80-120	73-127	
Vanadium		25.00	24.38	98	80-120	73-127	
Zinc		25.00	25.55	102	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received: Work Order: Preparation: Method:

14-06-0415 EPA 7471A Total EPA 7471A

06/05/14

Page 3 of 4

Quality Control Sample ID	Туре	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-291	LCS	Solid	Mercury 05 0	06/06/14	06/06/14 15:58	140606L01
<u>Parameter</u>		Spike Added	Conc. Recovered	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.8350	0.9229	111	85-12°	1

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-0415 EPA 3540C EPA 8082

06/05/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 4 of 4

Quality Control Sample ID	Туре	Matrix	Instrument D	Date Prepared [Date Analyzed	LCS Batch Number
099-02-003-262	LCS	Solid	GC 31 0	06/05/14	06/07/14 03:17	140605L24
Parameter		Spike Added	Conc. Recovered	d LCS %Rec	<u>%Rec.</u>	CL Qualifiers
Aroclor-1016		100.0	83.34	83	50-135	5
Aroclor-1260		100.0	90.54	91	60-130)

Sample Analysis Summary Report

Work Order: 14-06-0415				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6010B	EPA 3050B	469	ICP 7300	1
EPA 7471A	EPA 7471A Total	915	Mercury 05	1
EPA 8015B (M)	EPA 3550B	847	GC 48	1
FPA 8082	FPA 3540C	842	GC 31	1

Glossary of Terms and Qualifiers

Work Order: 14-06-0415 Page 1 of 1

Qualifiers	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further
ı	clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

X % Recovery and/or RPD out-of-range.

SG

Z Analyte presence was not confirmed by second column or GC/MS analysis.

The sample extract was subjected to Silica Gel treatment prior to analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Contents

Stephen Nowak

From: Lee, Zhur [zhur.lee@amec.com]
Sent: Friday, June 13, 2014 11:29 AM

To: Maricris dela Rosa; Costamagna, Daniel G; Holland, Kim; Conlan, Linda; Huang, Stephen

Cc: Stephen Nowak

Subject: RE: Former Pechiney Cast Plate Facility / 0106270030 / CEL 14-06-0415

Maricris/Stephen,

Please revise sample ID 755-IV-F/F-SS-001 on report 14-06-0415 to 755-IV-F/F-SS-002 and provide an updated report once the revision is made.

Thank you,

Zhur Lee

Project Coordinator

AMEC

Environment & Infrastructure 121 Innovation Drive, Suite 200, Irvine, CA 92617 Tel 949-642-0245 x1591, Fax 949-642-4474 zhur.lee@amec.com

From: Maricris dela Rosa [mailto:MaricrisdelaRosa@eurofinsUS.com]

Sent: Tuesday, June 10, 2014 4:01 PM

To: Costamagna, Daniel G; Holland, Kim; Conlan, Linda; Huang, Stephen; Lee, Zhur **Subject:** Former Pechiney Cast Plate Facility / 0106270030 / CEL 14-06-0415

Report and EDD attached.

Thank you, Maricris Dela Rosa Project Manager Assistant

Eurofins Calscience,Inc. 7440 Lincoln Way Garden Grove, CA 92841-1427 USA

Phone: +1 (714) 895-5494

Email: maricrisdelarosa@eurofinsus.com

website: www.calscience.com

The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon this information by persons or entities other than the intended recipient is prohibited. If you receive this in error, please contact the sender and delete the material from any computer. Email transmission cannot be guaranteed to be secure or error free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete. The sender therefore is in no way liable for any errors or omissions in the content of this message which may arise as a result of email transmission. If verification is required, please request a hard copy. We take reasonable precautions to ensure our emails are free from viruses. You need, however, to verify that this email and any attachments are free of viruses, as we can take no responsibility for any computer viruses, which might be transferred by way of this email. We may monitor all email communication through our networks. If you contact us by email, we may store your name and address to facilitate communication

CHAIN-OF-CUSTODY RECORD PROJECT NAME: FORMON DOLD	DON RECORD	Livil Civilia		DATE: //	7	PAGE	31353
PROJECT NUMBER: 01012	1 -	XTORX NAMES OF U.S.	CLIENT INFORMATION: / N	REPORTING REQUIREMENTS	UIREMENTS:		
RESULTS TO: LACA	Contan	LABORAŤÓRY ADDRESS:)		4-06-0415	
SAMPLE SHIPMENT METHOD:	HR	I ADSODATORY CONTROL:					
so courier		LABORATORY PHONE NUMBER:		GEOTRACKER REQUIRED	EQUIRED	YES	S S
S) SEE INV		ANALYSES	SES	SITE SPECIFIC GLOBAL ID NO	LOBAL ID NO		
Nimberly Choriusk	pormaky				/ater (W), or Other (O)	erainetr	
DATE TIME	SAMPLE NUMBER	PPA He		CONTAINER TYPE AND SIZE	Soil (S), M Vapor (V), Filtered Preservati	Cooled MS/MSD No. of Cor	ADDITIONAL COMMENTS
HE60 HI-5-9	4116	XXX		4 oz alass iar	S	×	
1 0925	イニカ	×		>	S	×	
9849	#1118				Ŋ	×	
8260		× × ×			S)	X	
09.29	1130	× × ×			S	×	
0929		× × ×			_හ	` ×	
1329	12	×			5	×	
1340		×			S	×	
Ď.	=	×			N	X	
1416	755-TV-F/F-SS-001	×		→	S	X	-
	Control of the Contro						AND THE PARTY OF T
		Committee of the Commit					
RELINQUISHED BY:	Y: DATE TIME	RECEIVED BY:	DATE TIME TOTAL!	TOTAL NUMBER OF CONTAINERS:		\ <u>\</u>	
R.	naky 61			SAMPLING COMMENTS:			, , , , , , , , , , , , , , , , , , , ,
COMPANY: ACADIM	homiroky 15/11	COMPANY.	1/2/2/2				
71		SIGNATURE	6/10/				
COMPANY: A COMPANY:	4/2/2/	PRINTED NAME: COMPANY: C.C.	06.30 m				
SIGNATORE: PRINTED MAME: COMPANY: E7	SI. FI M/2/2		18 / 18 M	121 Innovation Drive, Suite 200 Irvine, California 92617-3094 Tel 949 642 0245 Fax 949 642 2	Drive, Suite 200 a 92617-3094 Fax 949 642 4474	To the state of th	Same
70				i	1 111.31.0		

to Contents

ころとしのまひゅう

eurofins e

Calscience

WORK ORDER #: 14-06- 2 4

Cooler 1 of 1

CLIENT:AMEC	DATE: _	06/05/	14_
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C − 6.0 °C, not froze Temperature 3 • ○ °C − 0.3 °C (CF) = 3 • ○ °C − 0.3 °C (CF) = 3 • ○ °C − 0.3 °C (CF) = 3 • ○ °C − 0.3 °C (CF) = 3 • ○ °C − 0.3 °C (CF) = 3 • ○ °C − 0.3 °C (CF) = 3 • ○ °C − 0.3 °C (CF) = 3 • ○ °C − 0.3 °C (CF) = 3 • ○ °C − 0.3 °C (CF) = 3 • ○ °C − 0.3 °C (CF) = 3 • ○ °C − 0.3 °C (CF) = 3 • ○ °C − 0.3 °C − 0.0 °C − 0.	Blank	☐ Sample	804
CUSTODY SEALS INTACT: Cooler			804 846
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples		No N □ □	N/A
□ No analysis requested. □ Not relinquished. □ No date/time relinquished. Sampler's name indicated on COC	. 🗹		
Proper containers and sufficient volume for analyses requested	. ø		
Proper preservation noted on COC or sample container	. 0		
Tedlar bag(s) free of condensation	es [®] □Terra		AGBs
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □ Air: □Tedlar® □Canister Other: □ Trip Blank Lot#:			

Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope

Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ u: Ultra-pure znna: ZnAc₂+NaOH f: Filtered Scanned by:

Reviewed by:

Calscience

WORK ORDER NUMBER: 14-06-1215

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate Facility /

0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

Approved for release on 06/18/2014 by:

Stephen Nowak Project Manager

nelad

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Fo	ormer Pechiney Cast Plate	Facility / 0106270030
-------------------------	---------------------------	-----------------------

Work Order Number: 14-06-1215

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA 6010B/7471A CAC Title 22 Metals (Solid). 4.2 EPA 7471A Mercury (Solid). 4.2 EPA 7471A Mercury (Solid).	7 7 14
5	Quality Control Sample Data.5.1 MS/MSD.5.2 LCS/LCSD.	15 15 17
6	Sample Analysis Summary	19
7	Glossary of Terms and Qualifiers	20
8	Chain-of-Custody/Sample Receipt Form	21

Work Order Narrative

Work Order: 14-06-1215 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 06/16/14. They were assigned to Work Order 14-06-1215.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-1215

Project Name: Former Pechiney Cast Plate Facility /

0106270030

6

PO Number:

Date/Time 06/16/14 16:48

Received:

Number of Containers:

Attn: Linda Conlan

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
#1126	14-06-1215-1	06/16/14 11:17	1	Solid
#1127	14-06-1215-2	06/16/14 11:18	1	Solid
#1128	14-06-1215-3	06/16/14 11:21	1	Solid
#1129	14-06-1215-4	06/16/14 11:23	1	Solid
#1130	14-06-1215-5	06/16/14 11:24	1	Solid
#1131	14-06-1215-6	06/16/14 11:26	1	Solid

Detections Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-1215

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 06/16/14

Page 1 of 2 Attn: Linda Conlan

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1126 (14-06-1215-1)						
#1120 (14-00-1213-1) Arsenic	1.43		0.773	mg/kg	EPA 6010B	EPA 3050B
Barium	117		0.775	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.314		0.258	mg/kg	EPA 6010B	EPA 3050B
Chromium	13.9		0.258	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.2		0.258	mg/kg	EPA 6010B	EPA 3050B
Copper	13.8		0.515	mg/kg	EPA 6010B	EPA 3050B
Lead	0.905		0.515	mg/kg	EPA 6010B	EPA 3050B
Nickel	10.4		0.258	mg/kg	EPA 6010B	EPA 3050B
Vanadium	31.0		0.258	mg/kg	EPA 6010B	EPA 3050B
Zinc	45.2		1.03	mg/kg	EPA 6010B	EPA 3050B
#1127 (14-06-1215-2)	45.2		1.03	mg/kg	LFA 0010B	LFA 3030B
#1127 (14-00-1213-2) Arsenic	1.35		0.754	mg/kg	EPA 6010B	EPA 3050B
Barium	119		0.503	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.326		0.251	mg/kg	EPA 6010B	EPA 3050B
Chromium	14.7		0.251	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.9		0.251	mg/kg	EPA 6010B	EPA 3050B
Copper	16.2		0.503	mg/kg	EPA 6010B	EPA 3050B
Lead	0.703		0.503	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.390		0.251	mg/kg	EPA 6010B	EPA 3050B
Nickel	11.0		0.251	mg/kg	EPA 6010B	EPA 3050B
Vanadium	32.4		0.251	mg/kg	EPA 6010B	EPA 3050B
Zinc	50.2		1.01	mg/kg	EPA 6010B	EPA 3050B
#1128 (14-06-1215-3)	30.2		1.01	mg/kg	LFA 0010B	LFA 3030B
Arsenic	1.97		0.735	mg/kg	EPA 6010B	EPA 3050B
Barium	121		0.490	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.327		0.245	mg/kg	EPA 6010B	EPA 3050B
Chromium	15.0		0.245	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.7		0.245	mg/kg	EPA 6010B	EPA 3050B
Copper	14.6		0.490	mg/kg	EPA 6010B	EPA 3050B
Lead	1.38		0.490	mg/kg	EPA 6010B	EPA 3050B
Nickel	10.9		0.490	mg/kg	EPA 6010B	EPA 3050B
Vanadium	32.5		0.245	mg/kg	EPA 6010B	EPA 3050B
Zinc	50.6		0.980	mg/kg	EPA 6010B	EPA 3050B
21110	50.0		0.500	mg/kg	LI A OUTOD	L1 \(\Lambda\) 3030D

^{*} MDL is shown

Detections Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-1215

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 06/16/14

Attn: Linda Conlan Page 2 of 2

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1129 (14-06-1215-4)						
Arsenic	2.27		0.761	mg/kg	EPA 6010B	EPA 3050B
Barium	122		0.508	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.340		0.254	mg/kg	EPA 6010B	EPA 3050B
Chromium	15.7		0.254	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.9		0.254	mg/kg	EPA 6010B	EPA 3050B
Copper	20.8		0.508	mg/kg	EPA 6010B	EPA 3050B
Lead	5.76		0.508	mg/kg	EPA 6010B	EPA 3050B
Nickel	11.6		0.254	mg/kg	EPA 6010B	EPA 3050B
Vanadium	33.4		0.254	mg/kg	EPA 6010B	EPA 3050B
Zinc	55.9		1.02	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.121		0.0820	mg/kg	EPA 7471A	EPA 7471A Total
#1130 (14-06-1215-5)						
Arsenic	1.09		0.758	mg/kg	EPA 6010B	EPA 3050B
Barium	113		0.505	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.314		0.253	mg/kg	EPA 6010B	EPA 3050B
Chromium	13.9		0.253	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.0		0.253	mg/kg	EPA 6010B	EPA 3050B
Copper	14.0		0.505	mg/kg	EPA 6010B	EPA 3050B
Lead	1.06		0.505	mg/kg	EPA 6010B	EPA 3050B
Nickel	10.3		0.253	mg/kg	EPA 6010B	EPA 3050B
Vanadium	30.8		0.253	mg/kg	EPA 6010B	EPA 3050B
Zinc	44.8		1.01	mg/kg	EPA 6010B	EPA 3050B
#1131 (14-06-1215-6)						
Arsenic	9.99		0.750	mg/kg	EPA 6010B	EPA 3050B
Barium	121		0.500	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.341		0.250	mg/kg	EPA 6010B	EPA 3050B
Chromium	15.4		0.250	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.6		0.250	mg/kg	EPA 6010B	EPA 3050B
Copper	28.3		0.500	mg/kg	EPA 6010B	EPA 3050B
Lead	22.8		0.500	mg/kg	EPA 6010B	EPA 3050B
Nickel	11.7		0.250	mg/kg	EPA 6010B	EPA 3050B
Vanadium	32.8		0.250	mg/kg	EPA 6010B	EPA 3050B
Zinc	75.1		1.00	mg/kg	EPA 6010B	EPA 3050B

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/16/14 14-06-1215 EPA 3050B EPA 6010B

mg/kg

Units:

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1126	14-06-1215-1-A	06/16/14 11:17	Solid	ICP 7300	06/16/14	06/17/14 20:19	140616L04
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.773	1.03		
Arsenic		1.43	(0.773	1.03		
Barium		117	(0.515	1.03		
Beryllium		0.314	(0.258	1.03		
Cadmium		ND	(0.515	1.03		
Chromium		13.9	(0.258	1.03		
Cobalt		10.2	(0.258	1.03		
Copper		13.8	(0.515	1.03		
Lead		0.905	(0.515	1.03		
Molybdenum		ND	(0.258	1.03		
Nickel		10.4	(0.258	1.03		
Selenium		ND	(0.773	1.03		
Silver		ND	(0.258	1.03		
Thallium		ND	().773	1.03		
Vanadium		31.0	(0.258	1.03		
Zinc		45.2	1	1.03	1.03		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

06/16/14 14-06-1215 **EPA 3050B** EPA 6010B

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1127	14-06-1215-2-A	06/16/14 11:18	Solid	ICP 7300	06/16/14	06/17/14 20:20	140616L04
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	lifiers
Antimony		ND	(0.754	1.01		
Arsenic		1.35	(0.754	1.01		
Barium		119	(0.503	1.01		
Beryllium		0.326	(0.251	1.01		
Cadmium		ND	(0.503	1.01		
Chromium		14.7	(0.251	1.01		
Cobalt		10.9	(0.251	1.01		
Copper		16.2	(0.503	1.01		
Lead		0.703	(0.503	1.01		
Molybdenum		0.390	(0.251	1.01		
Nickel		11.0	(0.251	1.01		
Selenium		ND	(0.754	1.01		
Silver		ND	(0.251	1.01		
Thallium		ND	(0.754	1.01		
Vanadium		32.4	(0.251	1.01		
Zinc		50.2	•	1.01	1.01		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/16/14 14-06-1215 EPA 3050B EPA 6010B

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1128	14-06-1215-3-A	06/16/14 11:21	Solid	ICP 7300	06/16/14	06/17/14 20:22	140616L04
Parameter		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	lifiers
Antimony		ND	C).735	0.980		
Arsenic		1.97	C).735	0.980		
Barium		121	C).490	0.980		
Beryllium		0.327	C).245	0.980		
Cadmium		ND	C).490	0.980		
Chromium		15.0	C).245	0.980		
Cobalt		10.7	C).245	0.980		
Copper		14.6	C	0.490	0.980		
Lead		1.38	C	0.490	0.980		
Molybdenum		ND	C).245	0.980		
Nickel		10.9	C).245	0.980		
Selenium		ND	C).735	0.980		
Silver		ND	C).245	0.980		
Thallium		ND	C).735	0.980		
Vanadium		32.5	C	0.245	0.980		
Zinc		50.6	C	0.980	0.980		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/16/14 14-06-1215 EPA 3050B EPA 6010B

Units: mg/kg
Page 4 of 7

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1129	14-06-1215-4-A	06/16/14 11:23	Solid	ICP 7300	06/16/14	06/17/14 20:23	140616L04
Parameter		<u>Result</u>	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().761	1.02		
Arsenic		2.27	().761	1.02		
Barium		122	().508	1.02		
Beryllium		0.340	().254	1.02		
Cadmium		ND	(0.508	1.02		
Chromium		15.7	().254	1.02		
Cobalt		10.9	().254	1.02		
Copper		20.8	().508	1.02		
Lead		5.76	(0.508	1.02		
Molybdenum		ND	().254	1.02		
Nickel		11.6	().254	1.02		
Selenium		ND	().761	1.02		
Silver		ND	().254	1.02		
Thallium		ND	().761	1.02		
Vanadium		33.4	().254	1.02		
Zinc		55.9	1	.02	1.02		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received: Work Order: Preparation: Method:

14-06-1215 EPA 3050B EPA 6010B

06/16/14

mg/kg

Units:

Page 5 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1130	14-06-1215-5-A	06/16/14 11:24	Solid	ICP 7300	06/16/14	06/17/14 20:28	140616L04
<u>Parameter</u>		Result		<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().758	1.01		
Arsenic		1.09	().758	1.01		
Barium		113	(0.505	1.01		
Beryllium		0.314	(0.253	1.01		
Cadmium		ND	(0.505	1.01		
Chromium		13.9	(0.253	1.01		
Cobalt		10.0	(0.253	1.01		
Copper		14.0	(0.505	1.01		
Lead		1.06	(0.505	1.01		
Molybdenum		ND	(0.253	1.01		
Nickel		10.3	(0.253	1.01		
Selenium		ND	(0.758	1.01		
Silver		ND	(0.253	1.01		
Thallium		ND	(0.758	1.01		
Vanadium		30.8	(0.253	1.01		
Zinc		44.8		1.01	1.01		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/16/14 14-06-1215 EPA 3050B EPA 6010B

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 6 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1131	14-06-1215-6-A	06/16/14 11:26	Solid	ICP 7300	06/16/14	06/17/14 20:29	140616L04
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().750	1.00		
Arsenic		9.99	().750	1.00		
Barium		121	(0.500	1.00		
Beryllium		0.341	().250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		15.4	(0.250	1.00		
Cobalt		10.6	(0.250	1.00		
Copper		28.3	(0.500	1.00		
Lead		22.8	(0.500	1.00		
Molybdenum		ND	(0.250	1.00		
Nickel		11.7	(0.250	1.00		
Selenium		ND	(0.750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	(0.750	1.00		
Vanadium		32.8	(0.250	1.00		
Zinc		75.1	1	.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/16/14 14-06-1215 EPA 3050B EPA 6010B

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 7 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-18493	N/A	Solid	ICP 7300	06/16/14	06/17/14 19:57	140616L04
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qualifiers	
Antimony		ND	C	.750	1.00		
Arsenic		ND	C	0.750	1.00		
Barium		ND	C	0.500	1.00		
Beryllium		ND	C	0.250	1.00		
Cadmium		ND	C	0.500	1.00		
Chromium		ND	C).250	1.00		
Cobalt		ND	C	0.250	1.00		
Copper		ND	C	0.500	1.00		
Lead		ND	C	0.500	1.00		
Molybdenum		ND	C	0.250	1.00		
Nickel		ND	C	0.250	1.00		
Selenium		ND	C	.750	1.00		
Silver		ND	C	0.250	1.00		
Thallium		ND	C	.750	1.00		
Vanadium		ND	C	0.250	1.00		
Zinc		ND	1	.00	1.00		

 AMEC Environment & Infrastructure
 Date Received:
 06/16/14

 121 Innovation Drive, Suite 200
 Work Order:
 14-06-1215

 Irvine, CA 92617-3094
 Preparation:
 EPA 7471A Total

 Method:
 EPA 7471A

 Units:
 mg/kg

 Project: Former Pechiney Cast Plate Facility / 0106270030
 Page 1 of 1

Project. Former Pechiney	Casi Flate Facility / 0106	270030				P 6	age i oi i
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1126	14-06-1215-1-A	06/16/14 11:17	Solid	Mercury 05	06/16/14	06/17/14 13:53	140616L04
<u>Parameter</u>	·	Result	<u>RL</u> <u>DF</u>		<u>Qualifiers</u>		
Mercury		ND		0.0794	1.00		
#1127	14-06-1215-2-A	06/16/14 11:18	Solid	Mercury 05	06/16/14	06/17/14 13:56	140616L04
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qualifiers	
Mercury		ND		0.0833	1.00		
#1128	14-06-1215-3-A	06/16/14 11:21	Solid	Mercury 05	06/16/14	06/17/14 13:58	140616L04
<u>Parameter</u>		Result		<u>RL</u>	DF	Qu	alifiers
Mercury		ND		0.0806	1.00		
#1129	14-06-1215-4-A	06/16/14 11:23	Solid	Mercury 05	06/16/14	06/17/14 14:04	140616L04
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qu	<u>alifiers</u>
Mercury		0.121		0.0820	1.00		
#1130	14-06-1215-5-A	06/16/14 11:24	Solid	Mercury 05	06/16/14	06/17/14 14:07	140616L04
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qualifiers	
Mercury		ND		0.0794	1.00		
#1131	14-06-1215-6-A	06/16/14 11:26	Solid	Mercury 05	06/16/14	06/17/14 13:42	140616L04
<u>Parameter</u>		Result		<u>RL</u>	DF	Qualifiers	
Mercury		ND		0.0833	1.00		
Method Blank	099-16-272-312	N/A	Solid	Mercury 05	06/16/14	06/17/14 13:38	140616L04
<u>Parameter</u>		Result		RL	DF	Qu	alifiers
Mercury		ND		0.0833	1.00		

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/16/14 14-06-1215 EPA 3050B EPA 6010B

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 2

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepare	d Date Ana	llyzed	MS/MSD Ba	tch Number
#1131	Sample		Solid	ICF	7300	06/16/14	06/17/14	20:29	140616S04	
#1131	Matrix Spike		Solid	ICF	7300	06/16/14	06/17/14	20:17	140616S04	
#1131	Matrix Spike	Duplicate	Solid	ICF	7300	06/16/14	06/17/14	20:18	140616S04	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	11.50	46	13.20	53	50-115	14	0-20	3
Arsenic	9.989	25.00	32.75	91	34.47	98	75-125	5	0-20	
Barium	121.3	25.00	136.7	4X	149.8	4X	75-125	4X	0-20	Q
Beryllium	0.3407	25.00	24.32	96	26.32	104	75-125	8	0-20	
Cadmium	ND	25.00	23.88	96	26.30	105	75-125	10	0-20	
Chromium	15.42	25.00	38.54	92	41.78	105	75-125	8	0-20	
Cobalt	10.58	25.00	35.27	99	38.93	113	75-125	10	0-20	
Copper	28.28	25.00	51.65	94	54.34	104	75-125	5	0-20	
Lead	22.78	25.00	35.55	51	39.26	66	75-125	10	0-20	3
Molybdenum	ND	25.00	22.72	91	25.07	100	75-125	10	0-20	
Nickel	11.74	25.00	35.08	93	38.64	108	75-125	10	0-20	
Selenium	ND	25.00	18.64	75	21.44	86	75-125	14	0-20	
Silver	ND	12.50	12.03	96	12.91	103	75-125	7	0-20	
Thallium	ND	25.00	17.74	71	19.56	78	75-125	10	0-20	3
Vanadium	32.76	25.00	55.97	93	60.36	110	75-125	8	0-20	
Zinc	75.08	25.00	92.34	69	95.75	83	75-125	4	0-20	3

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure

Date Received:

Work Order:

14-06-1215

Irvine, CA 92617-3094

Preparation:

Method:

Date Received:

06/16/14

Preparation:

EPA 7471A Total

Method:

EPA 7471A

Project: Former Pechiney Cast Plate Facility / 0106270030 Page 2 of 2

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
#1131	Sample		Solid	Mer	cury 05	06/16/14	06/17/14	13:42	140616S04	
#1131	Matrix Spike		Solid	Mer	cury 05	06/16/14	06/17/14	13:44	140616S04	
#1131	Matrix Spike	Duplicate	Solid	Mer	cury 05	06/16/14	06/17/14	13:47	140616S04	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.8350	0.8913	107	0.8730	105	71-137	2	0-14	

Page 1 of 2

Quality Control - LCS

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: 06/16/14
Work Order: 14-06-1215
Preparation: EPA 3050B
Method: EPA 6010B

Project: Former Pechiney Cast Plate Facility / 0106270030

Quality Control Sample ID	Type	Matrix	Instrumen	t Date Prep	ared Date Ana	lyzed LCS Batch N	Number
097-01-002-18493	LCS	Solid	ICP 7300	06/16/14	06/17/14	20:04 140616L04	
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		25.00	23.54	94	80-120	73-127	
Arsenic		25.00	24.91	100	80-120	73-127	
Barium		25.00	25.26	101	80-120	73-127	
Beryllium		25.00	23.83	95	80-120	73-127	
Cadmium		25.00	25.21	101	80-120	73-127	
Chromium		25.00	25.32	101	80-120	73-127	
Cobalt		25.00	27.58	110	80-120	73-127	
Copper		25.00	25.28	101	80-120	73-127	
Lead		25.00	25.73	103	80-120	73-127	
Molybdenum		25.00	24.69	99	80-120	73-127	
Nickel		25.00	26.10	104	80-120	73-127	
Selenium		25.00	22.20	89	80-120	73-127	
Silver		12.50	12.44	100	80-120	73-127	
Thallium		25.00	26.38	106	80-120	73-127	
Vanadium		25.00	24.38	98	80-120	73-127	
Zinc		25.00	26.71	107	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-1215 EPA 7471A Total EPA 7471A

06/16/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 2

Quality Control Sample ID	Туре	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-312	LCS	Solid	Mercury 05 0	06/16/14	06/17/14 13:40	140616L04
<u>Parameter</u>		Spike Added	Conc. Recovered	<u>LCS %Re</u>	ec. %Rec.	. CL Qualifiers
Mercury		0.8350	0.8104	97	85-12	1

RPD: Relative Percent Difference. CL: Control Limits

Sample Analysis Summary Report

Work Order: 14-06-1215				Page 1 of 1
<u>Method</u>	<u>Extraction</u>	Chemist ID	<u>Instrument</u>	Analytical Location
EPA 6010B	EPA 3050B	469	ICP 7300	1
EPA 7471A	EPA 7471A Total	915	Mercury 05	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 14-06-1215 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- concentration by a factor of four or greater.

 SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

CHAIN-OF-CUSTODY RECORD	William to the second s			
PROJECT NAME: FARMER Pechine	1 Cast Plate Fac	11	DATE: 6-16-114	PAGE / OF /
**************************************	LABORATORY NAME: COLO	CLIENT MFORMATION: AMEC	REPORTING REQUIREMENTS:	
1			7	4-06-1215
2	LABORATORY CONTROTONAL		GEOTRACKER REQUIRED	YES
im comid	LABORATORY PHONE NUMBER:		SITE SPECIFIC GLOBAL ID NO.	
SAMPLERS (SIGNATURE):	ANALYSES	S		
himborby Cheminaky	PW E			
SAMPLE SAMPLE NUMBER	દ અમાં	CONT	CONTAINER Soil (S), Water Make	Cooled MS/MSD Mo. of Contail COMMENTS
6-16-14 1117 #1126	- ×	0 201	1	
1118 # 1137	*		Г	
1131 #1138	×		5	
1123 #1129	×		S	X <i>I</i>
0E.II# HEII	×		S	$ \chi I $
11126 #1131	X		S	\ \ \
			THE CALL PROPERTY OF THE PROPE	
	<i>f</i>			
				X
RELINQUISHED BY: DATE TIME	RECEIVED BY:	DATE TIME TOTAL NUMBER OF CONTAINERS	AINERS:	(6)
RINTED NAME OF CHOMING SAME I 400		sampling comments:)
AMEC / MY	CONFINE FINE			
PRINTED NAME TOWN 18/18/18/18/18/18/18/18/18/18/18/18/18/1	PRINTED NAME ALT	Ins. The		
COMPANY: ANEW	7075			
PRINTED WAME ? INTO 1/4/3 1/4/3	PRINTED NAME	121 Innovatio	□ =	
COMPANY SCIT	COMPANY: E(D)	11/ Iel 949.642.0245	5 Fax 949.642.4474	

irn to Contents

0 .

Calscience

WORK ORDER #: 14-06- 1 2

SAMPLE RECEIPT FORM Cooler / of /

CLIENT:AUEC	DATE: _	06//6	/ 14
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozen	except se	diment/tissue	e)
Temperature°C - 0.3°C (CF) =°C	Blank	☐ Sample)
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)			
☐ Sample(s) outside temperature criteria but received on ice/chilled on same da	ay of sampl	ing.	
\square Received at ambient temperature, placed on ice for transport by Co	urier.		
Ambient Temperature: □ Air □ Filter		Checked by	v:678
CUSTODY SEALS INTACT:			1.00
□ Cooler □ □ No (Not Intact) □ Not Present	□ N/A	Checked by	1: <u>6 18</u>
□ Sample □ □ No (Not Intact)		Checked by	1: <u> </u>
SAMPLE CONDITION:	res	No	N/A
Chain-Of-Custody (COC) document(s) received with samples			
COC document(s) received complete	7	П	П
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.	يعر	L.J	
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sampler's name indicated on COC			
Sample container label(s) consistent with COC	/		
Sample container(s) intact and good condition	. /		
Proper containers and sufficient volume for analyses requested	/		
Analyses received within holding time			
Aqueous samples received within 15-minute holding time	,		
□ pH □ Residual Chlorine □ Dissolved Sulfides □ Dissolved Oxygen			Ø
Proper preservation noted on COC or sample container			Ø
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace			Ø/
Tedlar bag(s) free of condensation CONTAINER TYPE:			ΪØ
Solid: ☑4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores	® □Terra	Cores [®] □_	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB [□1AGB na ₂ □	1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs	□1PB	□1PBna □	500PB
□250PB □250PB n □125PB □125PB znna □100PJ □100PJ na ₂ □			
Air: Tedlar® Canister Other: Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Env	relope F	Reviewed by:	659
Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ u: Ultra-pure znna: ZnAc₂+NaC	H f: Filtered	Scanned by:	050

Calscience

WORK ORDER NUMBER: 14-06-1827

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate Facility /

0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

Approved for release on 06/26/2014 by:

Stephen Nowak Project Manager

nelaci

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Fo	ormer Pechiney Cast Plate	Facility / 0106270030
-------------------------	---------------------------	-----------------------

Work Order Number: 14-06-1827

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data	6
5	Quality Control Sample Data.5.1 MS/MSD.5.2 LCS/LCSD.	7 7 8
6	Sample Analysis Summary	9
7	Glossary of Terms and Qualifiers	10
8	Chain-of-Custody/Sample Receipt Form	11

Work Order Narrative

Work Order: 14-06-1827 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 06/24/14. They were assigned to Work Order 14-06-1827.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: Project Name:

14-06-1827

Former Pechiney Cast Plate Facility /

0106270030

1

PO Number:

Date/Time

Received:

Number of

06/24/14 16:21

Containers:

Attn: Linda Conlan

Sample Identification Lab Number
908-V-P/S-SS-001 14-06-1827-1

Collection Date and Time

Number of Containers

Matrix

06/24/14 09:00 1 Solid

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-1827

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 06/24/14

Attn: Linda Conlan Page 1 of 1

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
908-V-P/S-SS-001 (14-06-1827-1)						
Aroclor-1254	79		50	ug/kg	EPA 8082	EPA 3540C

Subcontracted analyses, if any, are not included in this summary.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

2,4,5,6-Tetrachloro-m-Xylene

Date Received: Work Order: Preparation: Method: 06/24/14 14-06-1827 EPA 3540C EPA 8082

Units: ug/kg Page 1 of 1

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
908-V-P/S-SS-001	14-06-1827-1-A	06/24/14 09:00	Solid	GC 31	06/24/14	06/26/14 00:47	140624L15
<u>Parameter</u>		Result	R	<u>L</u>	<u>DF</u>	Qua	<u>lifiers</u>
Aroclor-1016		ND	5	0	1.00		
Aroclor-1221		ND	5	0	1.00		
Aroclor-1232		ND	5	0	1.00		
Aroclor-1242		ND	5	0	1.00		
Aroclor-1248		ND	5	0	1.00		
Aroclor-1254		79	5	0	1.00		
Aroclor-1260		ND	5	0	1.00		
Aroclor-1262		ND	5	0	1.00		
Aroclor-1268		ND	5	0	1.00		
<u>Surrogate</u>		Rec. (%)	<u>C</u>	ontrol Limits	Qualifiers		
Decachlorobiphenyl		103	6	0-125			

50-130

Method Blank	099-02-003-272	N/A	Solid GC 31	06/25/14	06/25/14 23:49	140624L15
<u>Parameter</u>		Result	<u>RL</u>	DF	Qu	<u>alifiers</u>
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		114	60-125			
2,4,5,6-Tetrachloro-m-Xylene		100	50-130			

88

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure Date Received: 06/24/14
121 Innovation Drive, Suite 200 Work Order: 14-06-1827
Irvine, CA 92617-3094 Preparation: EPA 3540C
Method: EPA 8082

Project: Former Pechiney Cast Plate Facility / 0106270030 Page 1 of 1

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
908-V-P/S-SS-001	Sample		Solid	GC	31	06/24/14	06/26/14	00:47	140624S15	
908-V-P/S-SS-001	Matrix Spike		Solid	GC	31	06/24/14	06/26/14	05:52	140624S15	
908-V-P/S-SS-001	Matrix Spike	Duplicate	Solid	GC	31	06/24/14	06/26/14	06:12	140624S15	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Aroclor-1016	ND	100.0	97.45	97	88.88	89	50-135	9	0-25	
Aroclor-1260	ND	100.0	115.1	115	96.93	97	50-135	17	0-25	

Quality Control - LCS

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/24/14 14-06-1827 EPA 3540C EPA 8082

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 1

Quality Control Sample ID	Туре	Matrix	Instrument I	Date Prepared	Date Analyzed	LCS Batch Number
099-02-003-272	LCS	Solid	GC 31	06/25/14	06/26/14 00:08	140624L15
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Aroclor-1016		100.0	87.32	87	50-135	5
Aroclor-1260		100.0	79.66	80	60-130)

Sample Analysis Summary Report

Work Order: 14-06-1827				Page 1 of 1
<u>Method</u>	Extraction	Chemist ID	Instrument	Analytical Location
EPA 8082	EPA 3540C	842	GC 31	1

Glossary of Terms and Qualifiers

Work Order: 14-06-1827 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
O	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- Q Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

NB 31220 PAGE OF	YES	Snənistr	M SO COMMENTS		Page 11 of 12
Muhr. DATE: 6-24/14 PA REPORTING REQUIREMENTS:	GEOTRACKER REQUIRED SITE SPECIFIC GLOBAL ID NO.		CONTAINER (9, %), Yapor (7), Yapor (7), Yapor (8), Yapor (7), Yapor (8), Yapo	TOTAL NUMBER OF CONTAINERS: SAMPLING COMMENTS: ACCOL 6	121 Innovation Drive, Suite 200 Irvine, California 92617-3094
Cast Plate Facility LABORATORY ADDRESS: LABORATORY ADDRESS:	LABORATORY CONTACT V VVC K LABORATORY PHONE NUMBER:	ANALYSES	8 43 3	RECEIVED BY: DATE TIME SIGNATURE.	Jours 6th 153
CHAIN-OF-CUSTODY RECORD PROJECT NAME: FORMOR PECHINEY (PROJECT NUMBER: 0/06270030 RESULTS TO: ANGR. CON ICON TURNAROUND TIME: US HE	SAMPLE SHIPMENT METHOD: 10 11 11 11 11 11 11 11 11 11 11 11 11	SAMPLERS (SIGNATURE):	SAMPLE SAMPLE NUMBER	RELINQUISHED BY: DATE TIME RIGHTON BELLINGUISHED BY: DATE TIME RINGE MAN HONOMINSKY COMPANY: A MCC	1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Calscience

WORK ORDER #: 14-06- 1 2

SAMPLE RECEIPT FORM Cooler __/ of /

TEMPERATURE			
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C – 6.0 °C, not frozer			
Temperature $3 \cdot 4^{\circ} \text{C} \cdot 0.3^{\circ} \text{C} \text{ (CF)} = 3 \cdot 1^{\circ} \text{C}$	 ∄Blank	☐ Sample	
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)			
☐ Sample(s) outside temperature criteria but received on ice/chilled on same d	ay of sampl	ing.	
\square Received at ambient temperature, placed on ice for transport by Co	urier.		
Ambient Temperature: Air Filter		Checked by	: 823
CUSTODY SEALS INTACT:	eres in the second ANSON ANSON AND ANSON AND ANSON AND AND ANSON AND AND AND AND AND AND AND AND AND AN		
□ Cooler □ □ No (Not Intact) ☑ Not Present	□ N/A	Checked by:	: <u>-</u>
□ Sample □ □ No (Not Intact) ✓ Not Present		Checked by:	<u> &v</u>
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	. 🗹		
COC document(s) received complete			
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sampler's name indicated on COC	Ø		
Sample container label(s) consistent with COC	ø'		
Sample container(s) intact and good condition			
Proper containers and sufficient volume for analyses requested	Ø		
Analyses received within holding time	Ø		
Aqueous samples received within 15-minute holding time			
□ pH □ Residual Chlorine □ Dissolved Sulfides □ Dissolved Oxygen			
Proper preservation noted on COC or sample container			Ø
Volatile analysis container(s) free of headspace			Ø
Tedlar bag(s) free of condensation			Ø
Solid: ☑4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores	s [®] □Terra	Cores [®] □	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp			1AGBs
			Th
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na₂ □	П		

Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ u: Ultra-pure znna: ZnAc₂+NaOH f: Filtered

Calscience

WORK ORDER NUMBER: 14-06-1828

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate Facility /

0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

Approved for release on 06/25/2014 by:

Stephen Nowak Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Former Pech	niney Cast Plate Facility / 0106270030
----------------------------------	--

Work Order Number: 14-06-1828

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data.	11 11 27
5	Quality Control Sample Data5.1 MS/MSD5.2 LCS/LCSD	29 29 31
6	Sample Analysis Summary	33
7	Glossary of Terms and Qualifiers	34
8	Chain-of-Custody/Sample Receipt Form	35

Work Order Narrative

Work Order: 14-06-1828 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 06/24/14. They were assigned to Work Order 14-06-1828.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order:

14-06-1828

Project Name: Former Pechiney Cast Plate Facility / 0106270030

PO Number:

Date/Time 06/24/14 16:21

Received:

Number of Containers:

15

Attn: Linda Conlan

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix	
#1162	14-06-1828-1	06/24/14 08:09	1	Solid	
#1163	14-06-1828-2	06/24/14 08:11	1	Solid	
#1164	14-06-1828-3	06/24/14 08:14	1	Solid	
#1165	14-06-1828-4	06/24/14 08:16	1	Solid	
#1166	14-06-1828-5	06/24/14 08:18	1	Solid	
#1167	14-06-1828-6	06/24/14 08:20	1	Solid	
#1168	14-06-1828-7	06/24/14 08:23	1	Solid	
#1169	14-06-1828-8	06/24/14 08:25	1	Solid	
#1170	14-06-1828-9	06/24/14 08:27	1	Solid	
#1171	14-06-1828-10	06/24/14 08:30	1	Solid	
#1172	14-06-1828-11	06/24/14 08:34	1	Solid	
#1173	14-06-1828-12	06/24/14 08:38	1	Solid	
#1174	14-06-1828-13	06/24/14 08:43	1	Solid	
#1175	14-06-1828-14	06/24/14 08:46	1	Solid	
#1176	14-06-1828-15	06/24/14 08:49	1	Solid	

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-1828

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 06/24/14

Attn: Linda Conlan Page 1 of 6

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
#1162 (14-06-1828-1)						
Barium	116		0.495	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.351		0.248	mg/kg	EPA 6010B	EPA 3050B
Chromium	16.4		0.248	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.1		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper	20.7		0.495	mg/kg	EPA 6010B	EPA 3050B
Lead	15.8		0.495	mg/kg	EPA 6010B	EPA 3050B
Nickel	19.8		0.248	mg/kg	EPA 6010B	EPA 3050B
Vanadium	35.9		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc	95.7		0.990	mg/kg	EPA 6010B	EPA 3050B
#1163 (14-06-1828-2)						
Barium	123		0.508	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.391		0.254	mg/kg	EPA 6010B	EPA 3050B
Chromium	17.7		0.254	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.3		0.254	mg/kg	EPA 6010B	EPA 3050B
Copper	16.3		0.508	mg/kg	EPA 6010B	EPA 3050B
Lead	2.86		0.508	mg/kg	EPA 6010B	EPA 3050B
Nickel	12.2		0.254	mg/kg	EPA 6010B	EPA 3050B
Vanadium	40.8		0.254	mg/kg	EPA 6010B	EPA 3050B
Zinc	55.3		1.02	mg/kg	EPA 6010B	EPA 3050B
#1164 (14-06-1828-3)						
Arsenic	0.796		0.721	mg/kg	EPA 6010B	EPA 3050B
Barium	109		0.481	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.293		0.240	mg/kg	EPA 6010B	EPA 3050B
Chromium	16.3		0.240	mg/kg	EPA 6010B	EPA 3050B
Cobalt	9.31		0.240	mg/kg	EPA 6010B	EPA 3050B
Copper	36.3		0.481	mg/kg	EPA 6010B	EPA 3050B
Lead	48.2		0.481	mg/kg	EPA 6010B	EPA 3050B
Nickel	19.5		0.240	mg/kg	EPA 6010B	EPA 3050B
Vanadium	31.5		0.240	mg/kg	EPA 6010B	EPA 3050B
Zinc	129		0.962	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.117		0.0847	mg/kg	EPA 7471A	EPA 7471A Total

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-1828

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 06/24/14

Attn: Linda Conlan Page 2 of 6

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1165 (14-06-1828-4)						
Arsenic	1.95		0.758	mg/kg	EPA 6010B	EPA 3050B
Barium	158		0.505	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.341		0.253	mg/kg	EPA 6010B	EPA 3050B
Cadmium	1.92		0.505	mg/kg	EPA 6010B	EPA 3050B
Chromium	22.1		0.253	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.5		0.253	mg/kg	EPA 6010B	EPA 3050B
Copper	37.0		0.505	mg/kg	EPA 6010B	EPA 3050B
Lead	45.8		0.505	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.378		0.253	mg/kg	EPA 6010B	EPA 3050B
Nickel	28.4		0.253	mg/kg	EPA 6010B	EPA 3050B
Vanadium	35.6		0.253	mg/kg	EPA 6010B	EPA 3050B
Zinc	771		1.01	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.128		0.0806	mg/kg	EPA 7471A	EPA 7471A Total
#1166 (14-06-1828-5)						
Arsenic	2.00		0.761	mg/kg	EPA 6010B	EPA 3050B
Barium	125		0.508	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.324		0.254	mg/kg	EPA 6010B	EPA 3050B
Chromium	23.1		0.254	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.6		0.254	mg/kg	EPA 6010B	EPA 3050B
Copper	52.9		0.508	mg/kg	EPA 6010B	EPA 3050B
Lead	94.5		0.508	mg/kg	EPA 6010B	EPA 3050B
Nickel	44.9		0.254	mg/kg	EPA 6010B	EPA 3050B
Vanadium	33.2		0.254	mg/kg	EPA 6010B	EPA 3050B
Zinc	198		1.02	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.125		0.0820	mg/kg	EPA 7471A	EPA 7471A Total

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-1828

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 06/24/14

Attn: Linda Conlan Page 3 of 6

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1167 (14-06-1828-6)						
Arsenic	3.87		0.750	mg/kg	EPA 6010B	EPA 3050B
Barium	130		0.500	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.387		0.250	mg/kg	EPA 6010B	EPA 3050B
Cadmium	0.623		0.500	mg/kg	EPA 6010B	EPA 3050B
Chromium	20.8		0.250	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.9		0.250	mg/kg	EPA 6010B	EPA 3050B
Copper	35.4		0.500	mg/kg	EPA 6010B	EPA 3050B
Lead	18.3		0.500	mg/kg	EPA 6010B	EPA 3050B
Nickel	39.5		0.250	mg/kg	EPA 6010B	EPA 3050B
Vanadium	39.4		0.250	mg/kg	EPA 6010B	EPA 3050B
Zinc	240		1.00	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.231		0.0862	mg/kg	EPA 7471A	EPA 7471A Total
#1168 (14-06-1828-7)						
Barium	141		0.515	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.452		0.258	mg/kg	EPA 6010B	EPA 3050B
Chromium	20.0		0.258	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.7		0.258	mg/kg	EPA 6010B	EPA 3050B
Copper	19.5		0.515	mg/kg	EPA 6010B	EPA 3050B
Lead	2.19		0.515	mg/kg	EPA 6010B	EPA 3050B
Nickel	14.1		0.258	mg/kg	EPA 6010B	EPA 3050B
Vanadium	45.0		0.258	mg/kg	EPA 6010B	EPA 3050B
Zinc	60.6		1.03	mg/kg	EPA 6010B	EPA 3050B
#1169 (14-06-1828-8)						
Barium	140		0.493	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.422		0.246	mg/kg	EPA 6010B	EPA 3050B
Chromium	21.9		0.246	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.6		0.246	mg/kg	EPA 6010B	EPA 3050B
Copper	26.2		0.493	mg/kg	EPA 6010B	EPA 3050B
Lead	13.0		0.493	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.269		0.246	mg/kg	EPA 6010B	EPA 3050B
Nickel	24.2		0.246	mg/kg	EPA 6010B	EPA 3050B
Vanadium	43.7		0.246	mg/kg	EPA 6010B	EPA 3050B
Zinc	80.1		0.985	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-1828

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 06/24/14

Attn: Linda Conlan Page 4 of 6

Analyte #1170 (14-06-1828-9)	Result	<u>Qualifiers</u>	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
#1170 (14-06-1828-9)	135					
	135					
Barium			0.493	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.422		0.246	mg/kg	EPA 6010B	EPA 3050B
Chromium	19.3		0.246	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.4		0.246	mg/kg	EPA 6010B	EPA 3050B
Copper	18.8		0.493	mg/kg	EPA 6010B	EPA 3050B
Lead	3.29		0.493	mg/kg	EPA 6010B	EPA 3050B
Nickel	14.5		0.246	mg/kg	EPA 6010B	EPA 3050B
Vanadium	44.2		0.246	mg/kg	EPA 6010B	EPA 3050B
Zinc	61.1		0.985	mg/kg	EPA 6010B	EPA 3050B
#1171 (14-06-1828-10)						
Barium	133		0.495	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.403		0.248	mg/kg	EPA 6010B	EPA 3050B
Chromium	19.8		0.248	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.1		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper	22.3		0.495	mg/kg	EPA 6010B	EPA 3050B
Lead	13.5		0.495	mg/kg	EPA 6010B	EPA 3050B
Nickel	14.9		0.248	mg/kg	EPA 6010B	EPA 3050B
Vanadium	41.8		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc	84.0		0.990	mg/kg	EPA 6010B	EPA 3050B
#1172 (14-06-1828-11)						
Arsenic	1.06		0.743	mg/kg	EPA 6010B	EPA 3050B
Barium	66.6		0.495	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.383		0.248	mg/kg	EPA 6010B	EPA 3050B
Chromium	17.6		0.248	mg/kg	EPA 6010B	EPA 3050B
Cobalt	9.65		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper	19.7		0.495	mg/kg	EPA 6010B	EPA 3050B
Lead	35.1		0.495	mg/kg	EPA 6010B	EPA 3050B
Nickel	14.1		0.248	mg/kg	EPA 6010B	EPA 3050B
Vanadium	33.6		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc	75.0		0.990	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-1828

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 06/24/14

Attn: Linda Conlan Page 5 of 6

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1173 (14-06-1828-12)						
Barium	116		0.500	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.369		0.250	mg/kg	EPA 6010B	EPA 3050B
Chromium	16.8		0.250	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.8		0.250	mg/kg	EPA 6010B	EPA 3050B
Copper	15.0		0.500	mg/kg	EPA 6010B	EPA 3050B
Lead	1.72		0.500	mg/kg	EPA 6010B	EPA 3050B
Nickel	11.6		0.250	mg/kg	EPA 6010B	EPA 3050B
Vanadium	38.5		0.250	mg/kg	EPA 6010B	EPA 3050B
Zinc	50.4		1.00	mg/kg	EPA 6010B	EPA 3050B
#1174 (14-06-1828-13)						
Barium	139		0.500	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.439		0.250	mg/kg	EPA 6010B	EPA 3050B
Chromium	20.0		0.250	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.8		0.250	mg/kg	EPA 6010B	EPA 3050B
Copper	18.8		0.500	mg/kg	EPA 6010B	EPA 3050B
Lead	2.18		0.500	mg/kg	EPA 6010B	EPA 3050B
Nickel	14.0		0.250	mg/kg	EPA 6010B	EPA 3050B
Vanadium	44.3		0.250	mg/kg	EPA 6010B	EPA 3050B
Zinc	60.9		1.00	mg/kg	EPA 6010B	EPA 3050B
#1175 (14-06-1828-14)						
Barium	137		0.493	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.413		0.246	mg/kg	EPA 6010B	EPA 3050B
Chromium	19.9		0.246	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.4		0.246	mg/kg	EPA 6010B	EPA 3050B
Copper	26.4		0.493	mg/kg	EPA 6010B	EPA 3050B
Lead	8.86		0.493	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.271		0.246	mg/kg	EPA 6010B	EPA 3050B
Nickel	14.3		0.246	mg/kg	EPA 6010B	EPA 3050B
Vanadium	43.0		0.246	mg/kg	EPA 6010B	EPA 3050B
Zinc	76.8		0.985	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-06-1828

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 06/24/14

Attn: Linda Conlan Page 6 of 6

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1176 (14-06-1828-15)						
Barium	148		0.503	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.450		0.251	mg/kg	EPA 6010B	EPA 3050B
Chromium	20.8		0.251	mg/kg	EPA 6010B	EPA 3050B
Cobalt	13.2		0.251	mg/kg	EPA 6010B	EPA 3050B
Copper	21.2		0.503	mg/kg	EPA 6010B	EPA 3050B
Lead	3.82		0.503	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.280		0.251	mg/kg	EPA 6010B	EPA 3050B
Nickel	23.6		0.251	mg/kg	EPA 6010B	EPA 3050B
Vanadium	46.0		0.251	mg/kg	EPA 6010B	EPA 3050B
Zinc	76.3		1.01	mg/kg	EPA 6010B	EPA 3050B

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-1828 EPA 3050B EPA 6010B

06/24/14

Units:

mg/kg Page 1 of 16

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1162	14-06-1828-1-A	06/24/14 08:09	Solid	ICP 7300	06/24/14	06/25/14 13:45	140624L06
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	(0.743	0.990		
Arsenic		ND	(0.743	0.990		
Barium		116	(0.495	0.990		
Beryllium		0.351	(0.248	0.990		
Cadmium		ND	(0.495	0.990		
Chromium		16.4	(0.248	0.990		
Cobalt		10.1	(0.248	0.990		
Copper		20.7	(0.495	0.990		
Lead		15.8	(0.495	0.990		
Molybdenum		ND	(0.248	0.990		
Nickel		19.8	(0.248	0.990		
Selenium		ND	(0.743	0.990		
Silver		ND	(0.248	0.990		
Thallium		ND	(0.743	0.990		
Vanadium		35.9	(0.248	0.990		
Zinc		95.7	(0.990	0.990		

RL: Reporting Limit. DF: Dilution Factor. MDL:

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/24/14 14-06-1828 EPA 3050B EPA 6010B

Units:

mg/kg Page 2 of 16

Project: Former Pechiney Cast Plate Facility / 0106270030

. age = c.

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1163	14-06-1828-2-A	06/24/14 08:11	Solid	ICP 7300	06/24/14	06/25/14 13:46	140624L06
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	C).761	1.02		
Arsenic		ND	C).761	1.02		
Barium		123	C	0.508	1.02		
Beryllium		0.391	C).254	1.02		
Cadmium		ND	C	0.508	1.02		
Chromium		17.7	C).254	1.02		
Cobalt		11.3	C).254	1.02		
Copper		16.3	C).508	1.02		
Lead		2.86	C).508	1.02		
Molybdenum		ND	C).254	1.02		
Nickel		12.2	C).254	1.02		
Selenium		ND	C).761	1.02		
Silver		ND	C).254	1.02		
Thallium		ND	C).761	1.02		
Vanadium		40.8	C).254	1.02		
Zinc		55.3	1	.02	1.02		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

06/24/14 14-06-1828 EPA 3050B EPA 6010B

mg/kg

Units:

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1164	14-06-1828-3-A	06/24/14 08:14	Solid	ICP 7300	06/24/14	06/25/14 13:47	140624L06
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.721	0.962		
Arsenic		0.796	(0.721	0.962		
Barium		109	(0.481	0.962		
Beryllium		0.293	(0.240	0.962		
Cadmium		ND	(0.481	0.962		
Chromium		16.3	(0.240	0.962		
Cobalt		9.31	(0.240	0.962		
Copper		36.3	(0.481	0.962		
Lead		48.2	(0.481	0.962		
Molybdenum		ND	(0.240	0.962		
Nickel		19.5	(0.240	0.962		
Selenium		ND	(0.721	0.962		
Silver		ND	(0.240	0.962		
Thallium		ND	().721	0.962		
Vanadium		31.5	(0.240	0.962		
Zinc		129	(0.962	0.962		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/24/14 14-06-1828 EPA 3050B EPA 6010B

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 4 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1165	14-06-1828-4-A	06/24/14 08:16	Solid	ICP 7300	06/24/14	06/25/14 13:48	140624L06
Parameter		<u>Result</u>	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().758	1.01		
Arsenic		1.95	().758	1.01		
Barium		158	().505	1.01		
Beryllium		0.341	().253	1.01		
Cadmium		1.92	().505	1.01		
Chromium		22.1	().253	1.01		
Cobalt		11.5	().253	1.01		
Copper		37.0	().505	1.01		
Lead		45.8	().505	1.01		
Molybdenum		0.378	().253	1.01		
Nickel		28.4	().253	1.01		
Selenium		ND	().758	1.01		
Silver		ND	().253	1.01		
Thallium		ND	().758	1.01		
Vanadium		35.6	().253	1.01		
Zinc		771	1	1.01	1.01		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/24/14 14-06-1828 EPA 3050B EPA 6010B

mg/kg Page 5 of 16

Project: Former Pechiney Cast Plate Facility / 0106270030

me OC Batch II

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1166	14-06-1828-5-A	06/24/14 08:18	Solid	ICP 7300	06/24/14	06/25/14 13:49	140624L06
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	lifiers
Antimony		ND	().761	1.02		
Arsenic		2.00	().761	1.02		
Barium		125	(0.508	1.02		
Beryllium		0.324	().254	1.02		
Cadmium		ND	(0.508	1.02		
Chromium		23.1	(0.254	1.02		
Cobalt		10.6	().254	1.02		
Copper		52.9	(0.508	1.02		
Lead		94.5	(0.508	1.02		
Molybdenum		ND	().254	1.02		
Nickel		44.9	().254	1.02		
Selenium		ND	(0.761	1.02		
Silver		ND	(0.254	1.02		
Thallium		ND	().761	1.02		
Vanadium		33.2	(0.254	1.02		
Zinc		198	1	1.02	1.02		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/24/14 14-06-1828 EPA 3050B

EPA 6010B mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 6 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1167	14-06-1828-6-A	06/24/14 08:20	Solid	ICP 7300	06/24/14	06/25/14 13:51	140624L06
<u>Parameter</u>		Result]	RL	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.750	1.00		
Arsenic		3.87	(0.750	1.00		
Barium		130	(0.500	1.00		
Beryllium		0.387	(0.250	1.00		
Cadmium		0.623	(0.500	1.00		
Chromium		20.8	(0.250	1.00		
Cobalt		11.9	(0.250	1.00		
Copper		35.4	(0.500	1.00		
Lead		18.3	(0.500	1.00		
Molybdenum		ND	(0.250	1.00		
Nickel		39.5	(0.250	1.00		
Selenium		ND	(0.750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	(0.750	1.00		
Vanadium		39.4	(0.250	1.00		
Zinc		240		1.00	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/24/14 14-06-1828 EPA 3050B

EPA 6010B mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 7 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1168	14-06-1828-7-A	06/24/14 08:23	Solid	ICP 7300	06/24/14	06/25/14 13:52	140624L06
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().773	1.03		
Arsenic		ND	().773	1.03		
Barium		141	(0.515	1.03		
Beryllium		0.452	(0.258	1.03		
Cadmium		ND	().515	1.03		
Chromium		20.0	(0.258	1.03		
Cobalt		12.7	().258	1.03		
Copper		19.5	().515	1.03		
Lead		2.19	().515	1.03		
Molybdenum		ND	().258	1.03		
Nickel		14.1	().258	1.03		
Selenium		ND	().773	1.03		
Silver		ND	(0.258	1.03		
Thallium		ND	().773	1.03		
Vanadium		45.0	().258	1.03		
Zinc		60.6	1	1.03	1.03		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/24/14 14-06-1828 EPA 3050B EPA 6010B

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 8 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1169	14-06-1828-8-A	06/24/14 08:25	Solid	ICP 7300	06/24/14	06/25/14 13:53	140624L06
<u>Parameter</u>		Result]	RL	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.739	0.985		
Arsenic		ND	(0.739	0.985		
Barium		140	(0.493	0.985		
Beryllium		0.422	(0.246	0.985		
Cadmium		ND	(0.493	0.985		
Chromium		21.9	(0.246	0.985		
Cobalt		12.6	(0.246	0.985		
Copper		26.2	(0.493	0.985		
Lead		13.0	(0.493	0.985		
Molybdenum		0.269	(0.246	0.985		
Nickel		24.2	(0.246	0.985		
Selenium		ND	(0.739	0.985		
Silver		ND	(0.246	0.985		
Thallium		ND	(0.739	0.985		
Vanadium		43.7	(0.246	0.985		
Zinc		80.1	(0.985	0.985		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/24/14 14-06-1828 EPA 3050B EPA 6010B

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 9 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1170	14-06-1828-9-A	06/24/14 08:27	Solid	ICP 7300	06/24/14	06/25/14 13:59	140624L06
Parameter		<u>Result</u>	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().739	0.985		
Arsenic		ND	().739	0.985		
Barium		135	(0.493	0.985		
Beryllium		0.422	().246	0.985		
Cadmium		ND	(0.493	0.985		
Chromium		19.3	().246	0.985		
Cobalt		12.4	(0.246	0.985		
Copper		18.8	(0.493	0.985		
Lead		3.29	(0.493	0.985		
Molybdenum		ND	().246	0.985		
Nickel		14.5	(0.246	0.985		
Selenium		ND	().739	0.985		
Silver		ND	(0.246	0.985		
Thallium		ND	().739	0.985		
Vanadium		44.2	(0.246	0.985		
Zinc		61.1	().985	0.985		

RL: Reporting Limit. DF: Dilution Factor.

or. MDL

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received: Work Order: Preparation: Method:

06/24/14 14-06-1828 **EPA 3050B** EPA 6010B

Units:

mg/kg Page 10 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1171	14-06-1828-10-A	06/24/14 08:30	Solid	ICP 7300	06/24/14	06/25/14 14:00	140624L06
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND		0.743	0.990		
Arsenic		ND		0.743	0.990		
Barium		133		0.495	0.990		
Beryllium		0.403		0.248	0.990		
Cadmium		ND		0.495	0.990		
Chromium		19.8		0.248	0.990		
Cobalt		12.1		0.248	0.990		
Copper		22.3		0.495	0.990		
Lead		13.5		0.495	0.990		
Molybdenum		ND		0.248	0.990		
Nickel		14.9		0.248	0.990		
Selenium		ND		0.743	0.990		
Silver		ND		0.248	0.990		
Thallium		ND		0.743	0.990		
Vanadium		41.8		0.248	0.990		
Zinc		84.0		0.990	0.990		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-1828 EPA 3050B EPA 6010B

06/24/14

Units:

mg/kg Page 11 of 16

Project: Former Pechiney Cast Plate Facility / 0106270030

T: 00 D / L ID

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1172	14-06-1828-11-A	06/24/14 08:34	Solid	ICP 7300	06/24/14	06/25/14 14:02	140624L06
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	lifiers
Antimony		ND	(0.743	0.990		
Arsenic		1.06	(0.743	0.990		
Barium		66.6	(0.495	0.990		
Beryllium		0.383	(0.248	0.990		
Cadmium		ND	(0.495	0.990		
Chromium		17.6	(0.248	0.990		
Cobalt		9.65	(0.248	0.990		
Copper		19.7	(0.495	0.990		
Lead		35.1	(0.495	0.990		
Molybdenum		ND	(0.248	0.990		
Nickel		14.1	(0.248	0.990		
Selenium		ND	(0.743	0.990		
Silver		ND	(0.248	0.990		
Thallium		ND	(0.743	0.990		
Vanadium		33.6	(0.248	0.990		
Zinc		75.0	(0.990	0.990		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/24/14 14-06-1828 EPA 3050B

Units:

EPA 6010B

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 12 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1173	14-06-1828-12-A	06/24/14 08:38	Solid	ICP 7300	06/24/14	06/25/14 14:03	140624L06
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	(0.750	1.00		
Arsenic		ND	(0.750	1.00		
Barium		116	(0.500	1.00		
Beryllium		0.369	(0.250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		16.8	(0.250	1.00		
Cobalt		10.8	(0.250	1.00		
Copper		15.0	(0.500	1.00		
Lead		1.72	(0.500	1.00		
Molybdenum		ND	(0.250	1.00		
Nickel		11.6	(0.250	1.00		
Selenium		ND	(0.750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	(0.750	1.00		
Vanadium		38.5	(0.250	1.00		
Zinc		50.4	1	1.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/24/14 14-06-1828 EPA 3050B EPA 6010B

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 13 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1174	14-06-1828-13-A	06/24/14 08:43	Solid	ICP 7300	06/24/14	06/25/14 14:04	140624L06
Parameter		Result	<u>F</u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.750	1.00		
Arsenic		ND	(0.750	1.00		
Barium		139	(0.500	1.00		
Beryllium		0.439	(0.250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		20.0	(0.250	1.00		
Cobalt		12.8	(0.250	1.00		
Copper		18.8	(0.500	1.00		
Lead		2.18	(0.500	1.00		
Molybdenum		ND	(0.250	1.00		
Nickel		14.0	(0.250	1.00		
Selenium		ND	().750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	().750	1.00		
Vanadium		44.3	(0.250	1.00		
Zinc		60.9	1	1.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/24/14 14-06-1828 EPA 3050B EPA 6010B

mg/kg

0020

Page 14 of 16

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1175	14-06-1828-14-A	06/24/14 08:46	Solid	ICP 7300	06/24/14	06/25/14 14:05	140624L06
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Antimony		ND		0.739	0.985		
Arsenic		ND		0.739	0.985		
Barium		137		0.493	0.985		
Beryllium		0.413		0.246	0.985		
Cadmium		ND		0.493	0.985		
Chromium		19.9		0.246	0.985		
Cobalt		12.4		0.246	0.985		
Copper		26.4		0.493	0.985		
Lead		8.86		0.493	0.985		
Molybdenum		0.271		0.246	0.985		
Nickel		14.3		0.246	0.985		
Selenium		ND		0.739	0.985		
Silver		ND		0.246	0.985		
Thallium		ND		0.739	0.985		
Vanadium		43.0		0.246	0.985		
Zinc		76.8		0.985	0.985		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

06/24/14 14-06-1828 EPA 3050B

EPA 6010B mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 15 of 16

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1176	14-06-1828-15-A	06/24/14 08:49	Solid	ICP 7300	06/24/14	06/25/14 14:06	140624L06
Parameter		Result		<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().754	1.01		
Arsenic		ND	().754	1.01		
Barium		148	(0.503	1.01		
Beryllium		0.450	().251	1.01		
Cadmium		ND	(0.503	1.01		
Chromium		20.8	().251	1.01		
Cobalt		13.2	().251	1.01		
Copper		21.2	(0.503	1.01		
Lead		3.82	(0.503	1.01		
Molybdenum		0.280	().251	1.01		
Nickel		23.6	().251	1.01		
Selenium		ND	().754	1.01		
Silver		ND	().251	1.01		
Thallium		ND	().754	1.01		
Vanadium		46.0	().251	1.01		
Zinc		76.3		1.01	1.01		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/24/14 14-06-1828 EPA 3050B EPA 6010B

mg/kg

Units:

Page 16 of 16

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-18526	N/A	Solid	ICP 7300	06/24/14	06/25/14 13:00	140624L06
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	C	0.750	1.00		
Arsenic		ND	C	0.750	1.00		
Barium		ND	C	.500	1.00		
Beryllium		ND	C).250	1.00		
Cadmium		ND	C	.500	1.00		
Chromium		ND	C	0.250	1.00		
Cobalt		ND	C).250	1.00		
Copper		ND	C	.500	1.00		
Lead		ND	C	.500	1.00		
Molybdenum		ND	C	0.250	1.00		
Nickel		ND	C	0.250	1.00		
Selenium		ND	C	0.750	1.00		
Silver		ND	C	.250	1.00		
Thallium		ND	C	0.750	1.00		
Vanadium		ND	C	.250	1.00		
Zinc		ND	1	.00	1.00		

AMEC Environment & Infrastructure

Date Received:

Work Order:

14-06-1828

Preparation:

Method:

EPA 7471A Total

Method:

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030 Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
‡ 1162	14-06-1828-1-A	06/24/14 08:09	Solid	Mercury 04	06/24/14	06/24/14 20:55	140624L06
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0877	1.00		
#1163	14-06-1828-2-A	06/24/14 08:11	Solid	Mercury 04	06/24/14	06/24/14 21:02	140624L06
<u>Parameter</u>		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury		ND		0.0820	1.00		
#1164	14-06-1828-3-A	06/24/14 08:14	Solid	Mercury 04	06/24/14	06/24/14 21:04	140624L06
Parameter		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		0.117		0.0847	1.00		
#1165	14-06-1828-4-A	06/24/14 08:16	Solid	Mercury 04	06/24/14	06/24/14 21:06	140624L06
Parameter_		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		0.128		0.0806	1.00		
#1166	14-06-1828-5-A	06/24/14 08:18	Solid	Mercury 04	06/24/14	06/24/14 21:08	140624L06
Parameter Parame		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		0.125		0.0820	1.00		
#1167	14-06-1828-6-A	06/24/14 08:20	Solid	Mercury 04	06/24/14	06/24/14 21:11	140624L06
Parameter Parameter		Result		RL	DF	Qua	alifiers
Mercury		0.231		0.0862	1.00		
#1168	14-06-1828-7-A	06/24/14 08:23	Solid	Mercury 04	06/24/14	06/24/14 21:13	140624L06
Parameter Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0862	1.00		
#1169	14-06-1828-8-A	06/24/14 08:25	Solid	Mercury 04	06/24/14	06/24/14 21:15	140624L06
Parameter		Result		RL	DF	Qua	alifiers
				<u>=</u>	<u> </u>		

AMEC Environment & Infrastructure

Date Received:

Work Order:

14-06-1828

Irvine, CA 92617-3094

Preparation:

Method:

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received:

Work Order:

14-06-1828

Preparation:

EPA 7471A Total

Method:

Units:

mg/kg

Page 2 of 2

	•						
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
‡ 1170	14-06-1828-9-A	06/24/14 08:27	Solid	Mercury 04	06/24/14	06/24/14 21:17	140624L06
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0781	1.00		
1171	14-06-1828-10-A	06/24/14 08:30	Solid	Mercury 04	06/24/14	06/24/14 21:20	140624L06
Parameter Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0820	1.00		
1 1172	14-06-1828-11-A	06/24/14 08:34	Solid	Mercury 04	06/24/14	06/24/14 21:22	140624L06
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0877	1.00		
±1173	14-06-1828-12-A	06/24/14 08:38	Solid	Mercury 04	06/24/14	06/24/14 21:29	140624L06
Parameter_		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0806	1.00		
‡ 1174	14-06-1828-13-A	06/24/14 08:43	Solid	Mercury 04	06/24/14	06/24/14 20:48	140624L06
Parameter Parameter		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0833	1.00		
±1175	14-06-1828-14-A	06/24/14 08:46	Solid	Mercury 04	06/24/14	06/24/14 21:31	140624L06
Parameter_		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0847	1.00		
1176	14-06-1828-15-A	06/24/14 08:49	Solid	Mercury 04	06/24/14	06/24/14 21:33	140624L06
<u>Parameter</u>		Result		RL	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0820	1.00		
Method Blank	099-16-272-335	N/A	Solid	Mercury 04	06/24/14	06/24/14 20:40	140624L06
Parameter		Result		RL	<u>DF</u>	Qua	alifiers

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 06/24/14 14-06-1828 EPA 3050B EPA 6010B

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 2

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepare	d Date Ana	lyzed	MS/MSD Ba	tch Number	
#1174	Sample		Solid	ICF	7300	06/24/14	06/25/14	14:04	140624S06		
#1174	Matrix Spike		Solid	ICF	7300	06/24/14	06/25/14	13:43	140624S06		
#1174	Matrix Spike	Duplicate	Solid	ICF	7300	06/24/14	06/25/14	13:44	140624S06		
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers	
Antimony	ND	25.00	8.733	35	8.348	33	50-115	5	0-20	3	
Arsenic	ND	25.00	25.02	100	24.98	100	75-125	0	0-20		
Barium	138.6	25.00	167.2	4X	165.1	4X	75-125	4X	0-20	Q	
Beryllium	0.4386	25.00	26.93	106	26.29	103	75-125	2	0-20		
Cadmium	ND	25.00	25.22	101	24.74	99	75-125	2	0-20		
Chromium	19.97	25.00	45.41	102	44.81	99	75-125	1	0-20		
Cobalt	12.79	25.00	38.46	103	38.17	102	75-125	1	0-20		
Copper	18.78	25.00	45.36	106	45.17	106	75-125	0	0-20		
Lead	2.183	25.00	27.01	99	26.96	99	75-125	0	0-20		
Molybdenum	ND	25.00	24.34	97	24.49	98	75-125	1	0-20		
Nickel	14.03	25.00	38.75	99	38.87	99	75-125	0	0-20		
Selenium	ND	25.00	19.72	79	20.09	80	75-125	2	0-20		
Silver	ND	12.50	12.77	102	12.62	101	75-125	1	0-20		
Thallium	ND	25.00	19.14	77	18.11	72	75-125	5	0-20	3	
Vanadium	44.33	25.00	69.95	102	68.86	98	75-125	2	0-20		
Zinc	60.87	25.00	86.37	102	84.73	95	75-125	2	0-20		

06/24/14

14-06-1828

EPA 7471A Total

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure Date Received: Work Order: 121 Innovation Drive, Suite 200 Preparation: Irvine, CA 92617-3094 Method:

EPA 7471A ge 2 of 2

Pag

Quality Control Sample ID	Туре	Matrix	Instru	ument	Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number	
#1174	Sample	Solid	Merc	ury 04	06/24/14	06/24/14 2	20:48	140624S06		
#1174	Matrix Spike	Solid	Merc	ury 04	06/24/14	06/24/14 2	20:51	140624S06		
#1174	Matrix Spike Duplic	ate Solid	Merc	ury 04	06/24/14	06/24/14 2	20:53	140624S06		
Parameter	Sample Spik Conc. Add	e <u>MS</u> ed <u>Conc.</u>	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers	
Mercury	ND 0.83	50 0.8152	98	0.8672	104	71-137	6	0-14		

06/24/14

14-06-1828

EPA 3050B

EPA 6010B

Page 1 of 2

irn to Contents

Quality Control - LCS

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

Project: Former Pechiney Cast Plate Facility / 0106270030

Quality Control Sample ID	Type	Matrix	Instrumen	t Date Prep	ared Date Ana	lyzed LCS Bate	ch Number
097-01-002-18526	LCS	Solid	ICP 7300	06/24/14	06/25/14	13:09 140624L	06
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
Antimony		25.00	25.68	103	80-120	73-127	
Arsenic		25.00	24.12	96	80-120	73-127	
Barium		25.00	24.79	99	80-120	73-127	
Beryllium		25.00	24.60	98	80-120	73-127	
Cadmium		25.00	26.43	106	80-120	73-127	
Chromium		25.00	24.83	99	80-120	73-127	
Cobalt		25.00	28.11	112	80-120	73-127	
Copper		25.00	25.96	104	80-120	73-127	
Lead		25.00	26.71	107	80-120	73-127	
Molybdenum		25.00	25.71	103	80-120	73-127	
Nickel		25.00	26.72	107	80-120	73-127	
Selenium		25.00	23.51	94	80-120	73-127	
Silver		12.50	12.27	98	80-120	73-127	
Thallium		25.00	27.19	109	80-120	73-127	
Vanadium		25.00	24.03	96	80-120	73-127	
Zinc		25.00	26.77	107	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Quality Control - LCS

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-06-1828 EPA 7471A Total EPA 7471A

06/24/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 2

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-335	LCS	Solid	Mercury 04	06/24/14	06/24/14 20:46	140624L06
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.8350	0.8275	99	85-12°	1

Sample Analysis Summary Report

Work Order: 14-06-1828				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6010B	EPA 3050B	469	ICP 7300	1
EPA 7471A	EPA 7471A Total	915	Mercury 04	1

Glossary of Terms and Qualifiers

Work Order: 14-06-1828 Page 1 of 1

<u>Qualifiers</u>	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- concentration by a factor of four or greater.

 SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

31219	- L	The state of the s			ON				ADDITIONAL																				ray	ge 3		Q.,
Ö Z	PAGE				YES			saenis	MS/MSD	┼		-									-		-	7	(T					***************************************		ame
	<u>A</u>							- i ype	Preservative Cooled	 	×	×	X	メ	\times	×	×	ン	×	×	×	×	×	人								
	11-15	MENTS			RED	AL ID NO.			Filtered																							00 1 2.4474
	DATE: 6-24-1	IG REQUIRE	*		GEOTRACKER REQUIRED	SITE SPECIFIC GLOBAL ID NO		ter (W), r Other (O)		iar S	δ	S	5	5	S	S	2	S	2	<u>\\</u>	S	8	8	<u>S</u>							***************************************	orive, Suite 200 a 92617-3094 Fax 949.642.4474
	DATE:	REPORTIN			GEOTRAC	SITE SPE			CONTAINER TYPE AND SIZE	402 alass in														>	TOTAL NUMBER OF CONTAINERS:	OMMENTS:	9					121 Innovation Drive, Suite 200 Irvine, California 92617-3094 Tel 949.642.0245 Fax 949.642.4
																											Parcel					12. In Tel 949
		CLIENT INFORMATION																							TIME	12	7			8		1621
	之	OLIENT INF					SES																		DATE				79		X 3/	1/2/9
		32	LABORATORY ADDRESS:		LABORATPEY SONZACTNOWAK	LABORATORY PHONE NUMBER:	ANALYSES	ELDW C	C 31+17		X	×	×	×	×	×	×	×	×	*	×	×	×	×	RECEIVED BY:	SIGNATURE:	230 PRINTED NAME:	COMPANY:	SIGNATURED	PRINTEDNAME:	COMPAINT.	SIGNAT URE: HEAD PRINTED NAME: 7 SAFTEL COMPANY: RFCF
۵	Pechines						ũ	efect of the state	ы Ж	162	163	7	65	b6	7	&	2	0		7	n				TE TIME		They have	//14	Z.		N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CHAIN-OF-CUSTODY RECORD			Contan	开风	tus		SIGNATUR	Achemina	SAMPLE	911#	711#	十1164	すー	タニキ	4116	8911#	41169	41170	#17	#117	# 17.0	71.1#	#1175	#1176	•	homansky (K	/	E H	1	3	TONNE TO
CUST	IAME: F	R 010 6	Linda	Me: タエ	NT METHOD:	2	ERS (erly	TIME	6080	1180	1180	0816	6818	0880	0873	0835	LZ80	0830	HE8Q	0838	6h80	9480	16480	SHĘD B	X m	NHC	<u>ئ</u>		P. T.	No.	12 4
CHAIN-OF	PROJECT NAME: FORMER	PROJECT NUMBER:	RESULTS TO:	TURNAROUND TIME:	SAMPLE SHIPMENT METHOD:		SAMPLE	Himberly	DAMAG	11-198-9	2				~						7			>	RELINQUISHED BY:	SIMATURE	REINTED NAW	FINAL TOTAL	SIGNATURE	PRINTED NAME	COMPANA	PRINTED NAME: COMPANY:

Return to Contents

Calscience

WORK ORDER #: 14-06- □ 🗹

SAMPLE RECEIPT FORM Cooler _/_ of /

CLIENT: <u>AMEC</u>	DATE: _	06/24/	<u> 14 </u>
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C − 6.0 °C, not froze Temperature		ediment/tissue) □ Sample	
사용하다 전체 전체 전체 경험 경험 경험 경험 전체			
☐ Sample(s) outside temperature criteria but received on ice/chilled on same of		ing.	
☐ Received at ambient temperature, placed on ice for transport by Co	ourier.		Cho.
Ambient Temperature: □ Air □ Filter		Checked by:	: <u>81</u> 7
CUSTODY SEALS INTACT:			
□ Cooler □ □ No (Not Intact) ☑ Not Present	□ N/Δ	Chacked hy	Str
[20]			
☐ Sample ☐ ☐ No (Not Intact) ☐ Not Present		Checked by.	700
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	.d		
COC document(s) received complete	/ 2		
☐ Co lection date/time, matrix, and/or # of containers logged in based on sample labels			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sampler's name indicated on COC	. <u>/</u>		
Sample container label(s) consistent with COC	. pr		
Sample container(s) intact and good condition	. p		
Proper containers and sufficient volume for analyses requested	/		
Aqueous samples received within 15-minute holding time			
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfides ☐ Dissolved Oxygen,	. 🗆		Ø
Proper preservation noted on COC or sample container	. 🗖		ø.
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace	. 🗖		7
Tedlar pag(s) free of condensation	-		Ø
Solid: ☑4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCore	s® ⊟Terra	.Cores [®] □	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB [⊐1AGB na₂ □	1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs	s □1PB	□1PB na □5	00PB
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na₂ □			
Air: Tedlar® Canister Other: Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Er Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ +Na	Labeled		769

Calscience

WORK ORDER NUMBER: 14-07-0556

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate Facility /

0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

Approved for release on 07/14/2014 by:

Stephen Nowak Project Manager

ResultLink ▶

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Former Pechiney Cast Plate Facility / 01062	270030
--	--------

Work Order Number: 14-07-0556

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA 8015B (M) C6-C44 (Solid). 4.2 EPA 6010B ICP Metals (Solid). 4.3 EPA 6010B/7471A CAC Title 22 Metals (Solid). 4.4 EPA 7471A Mercury (Solid). 4.5 EPA 8082 PCB Aroclors (Solid).	9 17 18 26 27
5	Quality Control Sample Data. 5.1 MS/MSD. 5.2 LCS/LCSD.	35 35 39
6	Sample Analysis Summary	43
7	Glossary of Terms and Qualifiers	44
8	Chain-of-Custody/Sample Receipt Form	45

Work Order Narrative

Work Order: 14-07-0556 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 07/09/14. They were assigned to Work Order 14-07-0556.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order:

14-07-0556

Former Pechiney Cast Plate Facility /

0106270030

14

PO Number:

Project Name:

Date/Time 07/09/14 17:30

Received:

Number of Containers:

Attn: Linda Conlan

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
925-V-R/R-SS-001	14-07-0556-1	07/09/14 08:23	1	Solid
925-V-R/R-SS-002	14-07-0556-2	07/09/14 08:25	1	Solid
925-V-R/R-SS-003	14-07-0556-3	07/09/14 08:27	1	Solid
925-V-R/R-SS-004	14-07-0556-4	07/09/14 08:31	1	Solid
925-V-R/R-SS-005	14-07-0556-5	07/09/14 08:35	1	Solid
925-V-R/R-SS-006	14-07-0556-6	07/09/14 08:36	1	Solid
925-V-R/R-SS-007	14-07-0556-7	07/09/14 08:37	1	Solid
W-83	14-07-0556-8	07/09/14 10:59	1	Solid
W-84	14-07-0556-9	07/09/14 11:00	1	Solid
W-85	14-07-0556-10	07/09/14 11:01	1	Solid
W-86	14-07-0556-11	07/09/14 11:08	1	Solid
W-87	14-07-0556-12	07/09/14 11:09	1	Solid
W-88	14-07-0556-13	07/09/14 11:10	1	Solid
W-89	14-07-0556-14	07/09/14 11:11	1	Solid

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-07-0556

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 07/09/14

Attn: Linda Conlan Page 1 of 4

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
925-V-R/R-SS-001 (14-07-0556-1)						
Arsenic	1.14		0.769	mg/kg	EPA 6010B	EPA 3050B
Barium	143		0.513	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.387		0.256	mg/kg	EPA 6010B	EPA 3050B
Chromium	18.1		0.256	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.5		0.256	mg/kg	EPA 6010B	EPA 3050B
Copper	17.8		0.513	mg/kg	EPA 6010B	EPA 3050B
Lead	2.00		0.513	mg/kg	EPA 6010B	EPA 3050B
Nickel	13.2		0.256	mg/kg	EPA 6010B	EPA 3050B
Vanadium	40.6		0.256	mg/kg	EPA 6010B	EPA 3050B
Zinc	58.5		1.03	mg/kg	EPA 6010B	EPA 3050B
925-V-R/R-SS-002 (14-07-0556-2)						
Barium	125		0.493	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.368		0.246	mg/kg	EPA 6010B	EPA 3050B
Chromium	16.6		0.246	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.3		0.246	mg/kg	EPA 6010B	EPA 3050B
Copper	15.9		0.493	mg/kg	EPA 6010B	EPA 3050B
Lead	2.03		0.493	mg/kg	EPA 6010B	EPA 3050B
Nickel	11.5		0.246	mg/kg	EPA 6010B	EPA 3050B
Vanadium	38.5		0.246	mg/kg	EPA 6010B	EPA 3050B
Zinc	52.4		0.985	mg/kg	EPA 6010B	EPA 3050B
925-V-R/R-SS-003 (14-07-0556-3)						
Barium	117		0.483	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.340		0.242	mg/kg	EPA 6010B	EPA 3050B
Chromium	16.1		0.242	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.7		0.242	mg/kg	EPA 6010B	EPA 3050B
Copper	15.0		0.483	mg/kg	EPA 6010B	EPA 3050B
Lead	2.91		0.483	mg/kg	EPA 6010B	EPA 3050B
Nickel	11.3		0.242	mg/kg	EPA 6010B	EPA 3050B
Vanadium	35.5		0.242	mg/kg	EPA 6010B	EPA 3050B
Zinc	50.8		0.966	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-07-0556

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

07/09/14 Received:

Attn: Linda Conlan Page 2 of 4

<u>Analyte</u>	Result					
Analyte	rtooun	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
925-V-R/R-SS-004 (14-07-0556-4)						
Arsenic	5.08		0.728	mg/kg	EPA 6010B	EPA 3050B
Barium	151		0.485	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.481		0.243	mg/kg	EPA 6010B	EPA 3050B
Chromium	46.4		0.243	mg/kg	EPA 6010B	EPA 3050B
Cobalt	31.7		0.243	mg/kg	EPA 6010B	EPA 3050B
Copper	116		0.485	mg/kg	EPA 6010B	EPA 3050B
Lead	90.3		0.485	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.589		0.243	mg/kg	EPA 6010B	EPA 3050B
Nickel	45.3		0.243	mg/kg	EPA 6010B	EPA 3050B
Vanadium	39.7		0.243	mg/kg	EPA 6010B	EPA 3050B
Zinc	237		0.971	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.171		0.0833	mg/kg	EPA 7471A	EPA 7471A Total
C19-C20	6.0		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C21-C22	10		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C23-C24	11		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	23		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	29		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	18		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	13		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	120		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
Aroclor-1248	530		50	ug/kg	EPA 8082	EPA 3540C
Aroclor-1260	110		50	ug/kg	EPA 8082	EPA 3540C
925-V-R/R-SS-005 (14-07-0556-5)						
Barium	123		0.476	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.376		0.238	mg/kg	EPA 6010B	EPA 3050B
Chromium	17.3		0.238	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.5		0.238	mg/kg	EPA 6010B	EPA 3050B
Copper	16.6		0.476	mg/kg	EPA 6010B	EPA 3050B
Lead	2.06		0.476	mg/kg	EPA 6010B	EPA 3050B
Nickel	12.0		0.238	mg/kg	EPA 6010B	EPA 3050B
Vanadium	40.2		0.238	mg/kg	EPA 6010B	EPA 3050B
Zinc	49.8		0.952	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-07-0556

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 07/09/14

Attn: Linda Conlan Page 3 of 4

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
925-V-R/R-SS-006 (14-07-0556-6)						
Barium	120		0.508	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.347		0.254	mg/kg	EPA 6010B	EPA 3050B
Chromium	16.4		0.254	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.9		0.254	mg/kg	EPA 6010B	EPA 3050B
Copper	15.0		0.508	mg/kg	EPA 6010B	EPA 3050B
Lead	3.22		0.508	mg/kg	EPA 6010B	EPA 3050B
Nickel	11.5		0.254	mg/kg	EPA 6010B	EPA 3050B
Vanadium	37.4		0.254	mg/kg	EPA 6010B	EPA 3050B
Zinc	54.3		1.02	mg/kg	EPA 6010B	EPA 3050B
925-V-R/R-SS-007 (14-07-0556-7)						
Barium	113		0.510	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.336		0.255	mg/kg	EPA 6010B	EPA 3050B
Chromium	16.3		0.255	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.6		0.255	mg/kg	EPA 6010B	EPA 3050B
Copper	17.4		0.510	mg/kg	EPA 6010B	EPA 3050B
Lead	6.45		0.510	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.299		0.255	mg/kg	EPA 6010B	EPA 3050B
Nickel	12.7		0.255	mg/kg	EPA 6010B	EPA 3050B
Vanadium	35.8		0.255	mg/kg	EPA 6010B	EPA 3050B
Zinc	54.0		1.02	mg/kg	EPA 6010B	EPA 3050B
C17-C18	34		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C19-C20	54		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C21-C22	62		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C23-C24	67		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	72		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	74		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	26		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C37-C40	15		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	410		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
W-83 (14-07-0556-8)						
Arsenic	5.42		0.758	mg/kg	EPA 6010B	EPA 3050B
Aroclor-1248	1000		250	ug/kg	EPA 8082	EPA 3540C
W-86 (14-07-0556-11)						
Arsenic	6.62		0.750	mg/kg	EPA 6010B	EPA 3050B
W-89 (14-07-0556-14)				, <u>.</u>		
Arsenic	13.5		0.754	mg/kg	EPA 6010B	EPA 3050B
Aroclor-1248	650		50	ug/kg	EPA 8082	EPA 3540C

^{*} MDL is shown

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-07-0556

Project Name: Former Pechiney Cast Plate Facility /

0106270030

Received: 07/09/14

Attn: Linda Conlan Page 4 of 4

Client SampleID

Analyte Result Qualifiers RL Units Method Extraction

Subcontracted analyses, if any, are not included in this summary.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 07/09/14 14-07-0556 EPA 3550B EPA 8015B (M)

mg/kg

Units: m
Page 1 of 8

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-001	14-07-0556-1-A	07/09/14 08:23	Solid	GC 46	07/09/14	07/09/14 20:06	140709B03
Parameter		Result	RL		<u>DF</u>	Qualit	fiers
C6		ND	4.9)	1.00		
C7		ND	4.9)	1.00		
C8		ND	4.9)	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 07/09/14 14-07-0556 EPA 3550B EPA 8015B (M)

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-002	14-07-0556-2-A	07/09/14 08:25	Solid	GC 46	07/09/14	07/09/14 20:24	140709B03
Parameter		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	alifiers
C6		ND	5.1		1.00		
C7		ND	5.1		1.00		
C8		ND	5.1		1.00		
C9-C10		ND	5.1		1.00		
C11-C12		ND	5.1		1.00		
C13-C14		ND	5.1		1.00		
C15-C16		ND	5.1		1.00		
C17-C18		ND	5.1		1.00		
C19-C20		ND	5.1		1.00		
C21-C22		ND	5.1		1.00		
C23-C24		ND	5.1		1.00		
C25-C28		ND	5.1		1.00		
C29-C32		ND	5.1		1.00		
C33-C36		ND	5.1		1.00		
C37-C40		ND	5.1		1.00		
C41-C44		ND	5.1		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	Qualifiers		
n-Octacosane		70	61-1	45			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

07/09/14 14-07-0556 EPA 3550B EPA 8015B (M)

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-003	14-07-0556-3-A	07/09/14 08:27	Solid	GC 46	07/09/14	07/09/14 20:40	140709B03
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
C6		ND	5.0		1.00		
C7		ND	5.0		1.00		
C8		ND	5.0		1.00		
C9-C10		ND	5.0		1.00		
C11-C12		ND	5.0		1.00		
C13-C14		ND	5.0		1.00		
C15-C16		ND	5.0		1.00		
C17-C18		ND	5.0		1.00		
C19-C20		ND	5.0		1.00		
C21-C22		ND	5.0		1.00		
C23-C24		ND	5.0		1.00		
C25-C28		ND	5.0		1.00		
C29-C32		ND	5.0		1.00		
C33-C36		ND	5.0		1.00		
C37-C40		ND	5.0		1.00		
C41-C44		ND	5.0		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	<u>Cor</u>	ntrol Limits	Qualifiers		
n-Octacosane		88	61-	145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 07/09/14 14-07-0556 EPA 3550B

Method: EPA 8015B (M) Units: mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 4 of 8

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-	004	14-07-0556-4-A	07/09/14 08:31	Solid	GC 46	07/09/14	07/09/14 20:58	140709B03
Comment(s):	- The total concentra	ation includes individual ca	rbon range cond	centrations (est	timated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
C6			ND	5.0		1.00		
C7			ND	5.0		1.00		
C8			ND	5.0		1.00		
C9-C10			ND	5.0		1.00		
C11-C12			ND	5.0		1.00		
C13-C14			ND	5.0		1.00		
C15-C16			ND	5.0		1.00		
C17-C18			ND	5.0		1.00		
C19-C20			6.0	5.0		1.00		
C21-C22			10	5.0		1.00		
C23-C24			11	5.0		1.00		
C25-C28			23	5.0		1.00		
C29-C32			29	5.0		1.00		
C33-C36			18	5.0		1.00		
C37-C40			13	5.0		1.00		
C41-C44			ND	5.0		1.00		
C6-C44 Total			120	5.0		1.00		
Surrogate			Rec. (%)	Con	ntrol Limits	Qualifiers		
n-Octacosane			67	61-1	145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

07/09/14 14-07-0556 EPA 3550B EPA 8015B (M)

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 5 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-005	14-07-0556-5-A	07/09/14 08:35	Solid	GC 46	07/09/14	07/09/14 21:16	140709B03
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	<u>llifiers</u>
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		
n-Octacosane		89	61-	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 07/09/14 14-07-0556 EPA 3550B EPA 8015B (M)

Units:

mg/kg Page 6 of 8

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-006	14-07-0556-6-A	07/09/14 08:36	Solid	GC 46	07/09/14	07/09/14 21:34	140709B03
Parameter		Result	RL		<u>DF</u>	Qua	alifiers
C6		ND	5.0	1	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0	1	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0	1	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		83	61-	145			

RL: Reporting Limit. DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation:

 Date Received:
 07/09/14

 Work Order:
 14-07-0556

 Preparation:
 EPA 3550B

 Method:
 EPA 8015B (M)

Units: mg/kg
Page 7 of 8

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-007	14-07-0556-7-A	07/09/14 08:37	Solid	GC 46	07/09/14	07/09/14 21:51	140709B03
Comment(s): - The total concentration	includes individual ca	rbon range cond	centrations (e	estimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>		<u>Result</u>	<u>R</u>	<u>L</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
C6		ND	5.	0	1.00		
C7		ND	5.	0	1.00		
C8		ND	5.	0	1.00		
C9-C10		ND	5.	0	1.00		
C11-C12		ND	5.	0	1.00		
C13-C14		ND	5.	0	1.00		
C15-C16		ND	5.	0	1.00		
C17-C18		34	5.	0	1.00		
C19-C20		54	5.	0	1.00		
C21-C22		62	5.	0	1.00		
C23-C24		67	5.	0	1.00		
C25-C28		72	5.	0	1.00		
C29-C32		74	5.	0	1.00		
C33-C36		26	5.	0	1.00		
C37-C40		15	5.	0	1.00		
C41-C44		ND	5.	0	1.00		
C6-C44 Total		410	5.	0	1.00		
<u>Surrogate</u>		Rec. (%)	<u>C</u>	ontrol Limits	Qualifiers		
n-Octacosane		95		1-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 07/09/14 14-07-0556 EPA 3550B EPA 8015B (M)

Units:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 8 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-995	N/A	Solid	GC 46	07/09/14	07/09/14 13:52	140709B03
<u>Parameter</u>		Result	RL	:	<u>DF</u>	Qua	alifiers
C6		ND	5.0)	1.00		
C7		ND	5.0)	1.00		
C8		ND	5.0)	1.00		
C9-C10		ND	5.0)	1.00		
C11-C12		ND	5.0)	1.00		
C13-C14		ND	5.0)	1.00		
C15-C16		ND	5.0)	1.00		
C17-C18		ND	5.0)	1.00		
C19-C20		ND	5.0)	1.00		
C21-C22		ND	5.0)	1.00		
C23-C24		ND	5.0)	1.00		
C25-C28		ND	5.0)	1.00		
C29-C32		ND	5.0)	1.00		
C33-C36		ND	5.0)	1.00		
C37-C40		ND	5.0)	1.00		
C41-C44		ND	5.0)	1.00		
C6-C44 Total		ND	5.0)	1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		82	61-	-145			

AMEC Environment & Infrastructure)		Date Re	eceived:			07/09/14
121 Innovation Drive, Suite 200			Work O	rder:			14-07-0556
Irvine, CA 92617-3094			Prepara	ition:			EPA 3050B
			Method	:			EPA 6010B
			Units:				mg/kg
Project: Former Pechiney Cast Plate	e Facility / 01062	270030				Pa	age 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-83	14-07-0556-8-A	07/09/14 10:59	Solid	ICP 7300	07/09/14	07/10/14 19:23	140709L03
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qu	alifiers
Arsenic		5.42		0.758	1.01		
W-84	14-07-0556-9-A	07/09/14 11:00	Solid	ICP 7300	07/09/14	07/10/14 19:24	140709L03
<u>Parameter</u>		Result		<u>RL</u>	DF	Qu	alifiers
Arsenic		ND		0.769	1.03		
W-85	14-07-0556-10-A	07/09/14 11:01	Solid	ICP 7300	07/09/14	07/10/14 19:25	140709L03
Parameter		Result	-	RL	<u>DF</u>	Qu	alifiers
Arsenic		ND		0.735	0.980		
W-86	14-07-0556-11-A	07/09/14 11:08	Solid	ICP 7300	07/09/14	07/10/14 19:26	140709L03
<u>Parameter</u>		Result		RL	DF	Qu	<u>alifiers</u>
Arsenic		6.62		0.750	1.00		
W-87	14-07-0556-12-A	07/09/14 11:09	Solid	ICP 7300	07/09/14	07/10/14 19:27	140709L03
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
Arsenic		ND		0.746	0.995		
W-88	14-07-0556-13-A	07/09/14 11:10	Solid	ICP 7300	07/09/14	07/10/14 19:28	140709L03
<u>Parameter</u>		Result	-	RL	DF	Qu	alifiers
Arsenic		ND		0.735	0.980		
W-89	14-07-0556-14-A	07/09/14 11:11	Solid	ICP 7300	07/09/14	07/10/14 19:29	140709L03
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qu	alifiers
Arsenic		13.5		0.754	1.01		
Method Blank	097-01-002-18586	N/A	Solid	ICP 7300	07/09/14	07/10/14 18:17	140709L03
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qu	<u>alifiers</u>

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Arsenic

0.750

1.00

ND

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 07/09/14 14-07-0556 EPA 3050B EPA 6010B

Units:

mg/kg Page 1 of 8

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-001	14-07-0556-1-A	07/09/14 08:23	Solid	ICP 7300	07/09/14	07/10/14 19:11	140709L03
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.769	1.03		
Arsenic		1.14	(0.769	1.03		
Barium		143	(0.513	1.03		
Beryllium		0.387	(0.256	1.03		
Cadmium		ND	(0.513	1.03		
Chromium		18.1	(0.256	1.03		
Cobalt		12.5	(0.256	1.03		
Copper		17.8	(0.513	1.03		
Lead		2.00	(0.513	1.03		
Molybdenum		ND	(0.256	1.03		
Nickel		13.2	(0.256	1.03		
Selenium		ND	(0.769	1.03		
Silver		ND	(0.256	1.03		
Thallium		ND	(0.769	1.03		
Vanadium		40.6	(0.256	1.03		
Zinc		58.5	1	1.03	1.03		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

07/09/14 14-07-0556 EPA 3050B

EPA 6010B mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-002	14-07-0556-2-A	07/09/14 08:25	Solid	ICP 7300	07/09/14	07/10/14 19:12	140709L03
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.739	0.985		
Arsenic		ND	(0.739	0.985		
Barium		125	(0.493	0.985		
Beryllium		0.368	(0.246	0.985		
Cadmium		ND	(0.493	0.985		
Chromium		16.6	(0.246	0.985		
Cobalt		11.3	(0.246	0.985		
Copper		15.9	(0.493	0.985		
Lead		2.03	(0.493	0.985		
Molybdenum		ND	(0.246	0.985		
Nickel		11.5	(0.246	0.985		
Selenium		ND	(0.739	0.985		
Silver		ND	(0.246	0.985		
Thallium		ND	(0.739	0.985		
Vanadium		38.5	(0.246	0.985		
Zinc		52.4	(0.985	0.985		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

07/09/14 14-07-0556 EPA 3050B EPA 6010B

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-003	14-07-0556-3-A	07/09/14 08:27	Solid	ICP 7300	07/09/14	07/10/14 19:13	140709L03
Parameter		Result	<u>F</u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	C).725	0.966		
Arsenic		ND	C).725	0.966		
Barium		117	C	0.483	0.966		
Beryllium		0.340	C).242	0.966		
Cadmium		ND	C	0.483	0.966		
Chromium		16.1	C).242	0.966		
Cobalt		10.7	C).242	0.966		
Copper		15.0	C	0.483	0.966		
Lead		2.91	C	0.483	0.966		
Molybdenum		ND	C).242	0.966		
Nickel		11.3	C	0.242	0.966		
Selenium		ND	C).725	0.966		
Silver		ND	C).242	0.966		
Thallium		ND	C).725	0.966		
Vanadium		35.5	C).242	0.966		
Zinc		50.8	C	0.966	0.966		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

07/09/14 14-07-0556 EPA 3050B EPA 6010B

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 4 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-004	14-07-0556-4-A	07/09/14 08:31	Solid	ICP 7300	07/09/14	07/10/14 19:15	140709L03
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().728	0.971		
Arsenic		5.08	().728	0.971		
Barium		151	(0.485	0.971		
Beryllium		0.481	(0.243	0.971		
Cadmium		ND	(0.485	0.971		
Chromium		46.4	(0.243	0.971		
Cobalt		31.7	(0.243	0.971		
Copper		116	(0.485	0.971		
Lead		90.3	(0.485	0.971		
Molybdenum		0.589	(0.243	0.971		
Nickel		45.3	(0.243	0.971		
Selenium		ND	().728	0.971		
Silver		ND	(0.243	0.971		
Thallium		ND	().728	0.971		
Vanadium		39.7	().243	0.971		
Zinc		237	().971	0.971		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

07/09/14 14-07-0556 EPA 3050B EPA 6010B

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 5 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-005	14-07-0556-5-A	07/09/14 08:35	Solid	ICP 7300	07/09/14	07/10/14 19:16	140709L03
<u>Parameter</u>		Result	اِ	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	(0.714	0.952		
Arsenic		ND	(0.714	0.952		
Barium		123	(0.476	0.952		
Beryllium		0.376	(0.238	0.952		
Cadmium		ND	(0.476	0.952		
Chromium		17.3	(0.238	0.952		
Cobalt		11.5	(0.238	0.952		
Copper		16.6	(0.476	0.952		
Lead		2.06	(0.476	0.952		
Molybdenum		ND	(0.238	0.952		
Nickel		12.0	(0.238	0.952		
Selenium		ND	(0.714	0.952		
Silver		ND	(0.238	0.952		
Thallium		ND	(0.714	0.952		
Vanadium		40.2	(0.238	0.952		
Zinc		49.8	(0.952	0.952		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 07/09/14 14-07-0556 EPA 3050B

Method: EPA 6010B Units: mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 6 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-006	14-07-0556-6-A	07/09/14 08:36	Solid	ICP 7300	07/09/14	07/10/14 19:21	140709L03
Parameter		<u>Result</u>	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().761	1.02		
Arsenic		ND	().761	1.02		
Barium		120	().508	1.02		
Beryllium		0.347	().254	1.02		
Cadmium		ND	(0.508	1.02		
Chromium		16.4	().254	1.02		
Cobalt		10.9	().254	1.02		
Copper		15.0	(0.508	1.02		
Lead		3.22	().508	1.02		
Molybdenum		ND	().254	1.02		
Nickel		11.5	().254	1.02		
Selenium		ND	().761	1.02		
Silver		ND	().254	1.02		
Thallium		ND	().761	1.02		
Vanadium		37.4	().254	1.02		
Zinc		54.3	1	.02	1.02		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 07/09/14 14-07-0556 EPA 3050B

Units:

EPA 6010B mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 7 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-007	14-07-0556-7-A	07/09/14 08:37	Solid	ICP 7300	07/09/14	07/10/14 19:22	140709L03
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().765	1.02		
Arsenic		ND	().765	1.02		
Barium		113	().510	1.02		
Beryllium		0.336	().255	1.02		
Cadmium		ND	().510	1.02		
Chromium		16.3	().255	1.02		
Cobalt		10.6	().255	1.02		
Copper		17.4	().510	1.02		
Lead		6.45	().510	1.02		
Molybdenum		0.299	().255	1.02		
Nickel		12.7	().255	1.02		
Selenium		ND	().765	1.02		
Silver		ND	().255	1.02		
Thallium		ND	().765	1.02		
Vanadium		35.8	().255	1.02		
Zinc		54.0	1	1.02	1.02		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

07/09/14 14-07-0556 EPA 3050B

EPA 6010B mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 8 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-18586	N/A	Solid	ICP 7300	07/09/14	07/10/14 18:17	140709L03
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().750	1.00		
Arsenic		ND	().750	1.00		
Barium		ND	().500	1.00		
Beryllium		ND	().250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		ND	(0.250	1.00		
Cobalt		ND	().250	1.00		
Copper		ND	(0.500	1.00		
Lead		ND	(0.500	1.00		
Molybdenum		ND	().250	1.00		
Nickel		ND	(0.250	1.00		
Selenium		ND	().750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	().750	1.00		
Vanadium		ND	(0.250	1.00		
Zinc		ND	1	1.00	1.00		

07/09/14 21:05

140709L09

Qualifiers

Method Blank

<u>Parameter</u>

Mercury

Analytical Report

AMEC Environment & Infrastructure Date Received: 07/09/14 14-07-0556 121 Innovation Drive, Suite 200 Work Order: Irvine, CA 92617-3094 Preparation: EPA 7471A Total Method: **EPA 7471A** Units: mg/kg

Project: Former Pechiney C	Cast Plate Facility / 0106	270030				Pa	ige 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-001	14-07-0556-1-A	07/09/14 08:23	Solid	Mercury 05	07/09/14	07/09/14 21:29	140709L09
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0833	1.00		
925-V-R/R-SS-002	14-07-0556-2-A	07/09/14 08:25	Solid	Mercury 05	07/09/14	07/09/14 21:32	140709L09
Parameter Parameter		Result	-	<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0820	1.00		
925-V-R/R-SS-003	14-07-0556-3-A	07/09/14 08:27	Solid	Mercury 05	07/09/14	07/09/14 21:34	140709L09
Parameter Parameter	·	Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0820	1.00		
925-V-R/R-SS-004	14-07-0556-4-A	07/09/14 08:31	Solid	Mercury 05	07/09/14	07/09/14 21:36	140709L09
Parameter Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		0.171		0.0833	1.00		
925-V-R/R-SS-005	14-07-0556-5-A	07/09/14 08:35	Solid	Mercury 05	07/09/14	07/09/14 21:38	140709L09
Parameter Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0794	1.00		
925-V-R/R-SS-006	14-07-0556-6-A	07/09/14 08:36	Solid	Mercury 05	07/09/14	07/09/14 21:41	140709L09
Parameter Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0820	1.00		
925-V-R/R-SS-007	14-07-0556-7-A	07/09/14 08:37	Solid	Mercury 05	07/09/14	07/09/14 21:43	140709L09
Parameter Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0862	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

099-16-272-376

N/A

Result

ND

Solid

<u>RL</u>

0.0833

Mercury 05

07/09/14

<u>DF</u>

1.00

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

07/09/14 14-07-0556 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-001	14-07-0556-1-A	07/09/14 08:23	Solid	GC 66	07/09/14	07/11/14 10:19	140709L18
Parameter	·	Result	RL	:	<u>DF</u>	Qua	<u>lifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		109	60-	-125			
2,4,5,6-Tetrachloro-m-Xylene		103	50-	-130			

925-V-R/R-SS-002	14-07-0556-2-A	07/09/14 08:25	Solid GC 66	07/09/14	07/11/14 10:37	140709L18
Parameter	·	Result	<u>RL</u>	<u>DF</u>	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		103	60-125			
2,4,5,6-Tetrachloro-m-Xylene		99	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 07/09/14 14-07-0556 EPA 3540C EPA 8082

Units:

ug/kg Page 2 of 8

Project: Former Pechiney Cast Plate Facility / 0106270030

- ugo 2 0. 0

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-003	14-07-0556-3-A	07/09/14 08:27	Solid	GC 66	07/09/14	07/11/14 10:55	140709L18
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Cor	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		101	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		91	50-	130			

925-V-R/R-SS-004	14-07-0556-4-A	07/09/14 08:31	Solid GC 66	07/09/14	07/11/14 11:13	140709L18
Parameter	·	Result	<u>RL</u>	DF	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		530	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		110	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		90	60-125			
2,4,5,6-Tetrachloro-m-Xylene		87	50-130			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

07/09/14 14-07-0556 EPA 3540C EPA 8082

ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix Ir		ate epared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-005	14-07-0556-5-A	07/09/14 08:35	Solid G	C 66 07	7/09/14	07/11/14 11:31	140709L18
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	alifiers
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Contro	ol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		107	60-12	5			
2,4,5,6-Tetrachloro-m-Xylene		107	50-13	0			

925-V-R/R-SS-006	14-07-0556-6-A	07/09/14 08:36	Solid GC 66	07/09/14	07/11/14 11:48	140709L18
Parameter		Result	RL	DF	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Lim	its Qualifiers		
Decachlorobiphenyl		111	60-125			
2,4,5,6-Tetrachloro-m-Xylene		107	50-130			

RL: Reporting Limit. DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

07/09/14 14-07-0556 EPA 3540C EPA 8082

ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 4 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-007	14-07-0556-7-A	07/09/14 08:37	Solid	GC 66	07/09/14	07/11/14 12:06	140709L18
<u>Parameter</u>		Result	RL	•	<u>DF</u>	Qua	lifiers
Aroclor-1016		ND	51		1.00		
Aroclor-1221		ND	51		1.00		
Aroclor-1232		ND	51		1.00		
Aroclor-1242		ND	51		1.00		
Aroclor-1248		ND	51		1.00		
Aroclor-1254		ND	51		1.00		
Aroclor-1260		ND	51		1.00		
Aroclor-1262		ND	51		1.00		
Aroclor-1268		ND	51		1.00		
Surrogate		Rec. (%)	Co	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		106	60	-125			
2,4,5,6-Tetrachloro-m-Xylene		104	50	-130			

W-83	14-07-0556-8-A	07/09/14 10:59	Solid GC 66	07/09/14	07/12/14 14:46	140709L18
Parameter		Result	<u>RL</u>	<u>DF</u>	Qu	alifiers
Aroclor-1016		ND	250	5.00		
Aroclor-1221		ND	250	5.00		
Aroclor-1232		ND	250	5.00		
Aroclor-1242		ND	250	5.00		
Aroclor-1248		1000	250	5.00		
Aroclor-1254		ND	250	5.00		
Aroclor-1260		ND	250	5.00		
Aroclor-1262		ND	250	5.00		
Aroclor-1268		ND	250	5.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		85	60-125			
2,4,5,6-Tetrachloro-m-Xylene		86	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 07/09/14 14-07-0556 EPA 3540C EPA 8082

Units: ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 5 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-84	14-07-0556-9-A	07/09/14 11:00	Solid	GC 66	07/09/14	07/11/14 12:42	140709L18
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	alifiers
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Cor	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		102	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		99	50-	130			
2,4,5,0 Tetracinoro III Ayiene							

W-85	14-07-0556-10-A	07/09/14 11:01	Solid GC 6	6 07/09/14	07/11/14 16:46	140709L18
Parameter		Result	<u>RL</u>	DF	Qu	<u>alifiers</u>
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Lir	mits Qualifiers		
Decachlorobiphenyl		99	60-125			
2,4,5,6-Tetrachloro-m-Xylene		117	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

07/09/14 14-07-0556 EPA 3540C EPA 8082

ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 6 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-86	14-07-0556-11-A	07/09/14 11:08	Solid	GC 66	07/09/14	07/11/14 17:04	140709L18
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Con</u>	trol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		97	60-1	125			
2,4,5,6-Tetrachloro-m-Xylene		108	50-1	130			

W-87	14-07-0556-12-A	07/09/14 11:09	Solid GC 66	07/09/14	07/11/14 17:21	140709L18
Parameter		Result	<u>RL</u>	DF	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limi	its Qualifiers		
Decachlorobiphenyl		96	60-125			
2,4,5,6-Tetrachloro-m-Xylene		107	50-130			

RL: Reporting Limit. DF: Dilution Factor. MDL

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

07/09/14 14-07-0556 EPA 3540C EPA 8082

ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 7 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-88	14-07-0556-13-A	07/09/14 11:10	Solid	GC 66	07/09/14	07/11/14 17:44	140709L18
Parameter		Result	RL	=	<u>DF</u>	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		96	60	-125			
2,4,5,6-Tetrachloro-m-Xylene		98	50	-130			

W-89	14-07-0556-14-A	07/09/14 11:11	Solid GC 66	07/09/14	07/11/14 18:02	140709L18
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qu</u>	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		650	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limi	its Qualifiers		
Decachlorobiphenyl		106	60-125			
2,4,5,6-Tetrachloro-m-Xylene		102	50-130			

RL: Reporting Limit. DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 07/09/14 14-07-0556 EPA 3540C EPA 8082

Units:

ug/kg Page 8 of 8

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-02-003-283	N/A	Solid	GC 66	07/09/14	07/11/14 09:44	140709L18
Parameter		Result	RL	:	DF	Qua	alifiers
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	<u>Co</u>	ntrol Limits	Qualifiers		
Decachlorobiphenyl		102	60-	-125			
2,4,5,6-Tetrachloro-m-Xylene		96	50-	-130			

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure Date Received: 07/09/14
121 Innovation Drive, Suite 200 Work Order: 14-07-0556
Irvine, CA 92617-3094 Preparation: EPA 3550B
Method: EPA 8015B (M)

Project: Former Pechiney Cast Plate Facility / 0106270030 Page 1 of 4

Quality Control Sample ID	Туре		Matrix	Instru	ument	Date Prepared	Date Ana	yzed	MS/MSD Bat	ch Number
14-07-0461-1	Sample		Solid	GC 4	16	07/09/14	07/09/14	15:20	140709S03	
14-07-0461-1	Matrix Spike		Solid	GC 4	16	07/09/14	07/09/14	14:45	140709S03	
14-07-0461-1	Matrix Spike D	uplicate	Solid	GC 4	16	07/09/14	07/09/14	15:03	140709S03	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	70.01	400.0	472.5	101	473.7	101	64-130	0	0-15	

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 07/09/14 14-07-0556 EPA 3050B EPA 6010B

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 4

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepar	ed Date Ana	lyzed	MS/MSD Ba	tch Number
W-86	Sample		Solid	ICP	7300	07/09/14	07/10/14	19:26	140709S03	
W-86	Matrix Spike		Solid	ICP	7300	07/09/14	07/10/14	19:09	140709S03	
W-86	Matrix Spike	Duplicate	Solid	ICP	7300	07/09/14	07/10/14	19:10	140709S03	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	11.65	47	12.09	48	50-115	4	0-20	3
Arsenic	6.616	25.00	29.89	93	30.82	97	75-125	3	0-20	
Barium	112.2	25.00	134.5	4X	139.2	4X	75-125	4X	0-20	Q
Beryllium	0.3374	25.00	25.40	100	25.96	103	75-125	2	0-20	
Cadmium	ND	25.00	24.88	100	25.13	101	75-125	1	0-20	
Chromium	14.77	25.00	40.24	102	40.66	104	75-125	1	0-20	
Cobalt	10.40	25.00	36.43	104	36.30	104	75-125	0	0-20	
Copper	13.86	25.00	40.24	106	41.88	112	75-125	4	0-20	
Lead	2.849	25.00	29.16	105	29.93	108	75-125	3	0-20	
Molybdenum	ND	25.00	25.09	100	25.03	100	75-125	0	0-20	
Nickel	10.71	25.00	35.66	100	35.75	100	75-125	0	0-20	
Selenium	ND	25.00	22.65	91	22.57	90	75-125	0	0-20	
Silver	ND	12.50	14.59	117	14.70	118	75-125	1	0-20	
Thallium	ND	25.00	18.67	75	18.56	74	75-125	1	0-20	3
Vanadium	35.58	25.00	60.27	99	61.06	102	75-125	1	0-20	
Zinc	55.58	25.00	76.46	84	81.11	102	75-125	6	0-20	

RPD: Relative Percent Difference. CL: Control Limits

07/09/14

14-07-0556 EPA 7471A Total

Project: Former Pechiney Cast Plate Facility / 0106270030

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure Date Received: 121 Innovation Drive, Suite 200 Work Order: Irvine, CA 92617-3094 Preparation:

Method: EPA 7471A Page 3 of 4

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
14-07-0371-1	Sample		Sedime	nt M	ercury 05	07/09/14	07/09/14	21:09	140709S09	
14-07-0371-1	Matrix Spike		Sedime	nt M	ercury 05	07/09/14	07/09/14	21:11	140709S09	
14-07-0371-1	Matrix Spike	Duplicate	Sedime	nt M	ercury 05	07/09/14	07/09/14	21:14	140709S09	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.8350	0.8940	107	0.8750	105	76-136	2	0-16	

Page 4 of 4

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure Date Received: 07/09/14
121 Innovation Drive, Suite 200 Work Order: 14-07-0556
Irvine, CA 92617-3094 Preparation: EPA 3540C
Method: EPA 8082

Project: Former Pechiney Cast Plate Facility / 0106270030

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
W-89	Sample		Solid	GC	66	07/09/14	07/11/14	18:02	140709S18	
W-89	Matrix Spike		Solid	GC	66	07/09/14	07/11/14	18:20	140709S18	
W-89	Matrix Spike	Duplicate	Solid	GC	66	07/09/14	07/11/14	18:38	140709S18	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Aroclor-1016	ND	100.0	175.0	175	186.5	187	50-135	6	0-25	3
Aroclor-1260	ND	100.0	171.0	171	223.6	224	50-135	27	0-25	3,4

Quality Control - LCS

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 07/09/14 14-07-0556 EPA 3550B

EPA 8015B (M)

Page 1 of 4

Project: Former Pechiney Cast Plate Facility / 0106270030

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-490-995	LCS	Solid	GC 46	07/09/14	07/09/14 14:09	140709B03
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
TPH as Diesel		400.0	450.5	113	75-123	3

RPD: Relative Percent Difference. CL: Control Limits

Page 2 of 4

to Contents

Quality Control - LCS

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: 07/09/14
Work Order: 14-07-0556
Preparation: EPA 3050B
Method: EPA 6010B

Project: Former Pechiney Cast Plate Facility / 0106270030

Quality Control Sample ID	Type	Matrix	Instrumen	t Date Prep	ared Date Ana	lyzed LCS Batcl	n Number
097-01-002-18586	LCS	Solid	ICP 7300	07/09/14	07/10/14	18:24 140709L0	3
Parameter Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		25.00	28.52	114	80-120	73-127	
Arsenic		25.00	24.80	99	80-120	73-127	
Barium		25.00	26.43	106	80-120	73-127	
Beryllium		25.00	25.39	102	80-120	73-127	
Cadmium		25.00	26.45	106	80-120	73-127	
Chromium		25.00	26.98	108	80-120	73-127	
Cobalt		25.00	27.91	112	80-120	73-127	
Copper		25.00	25.89	104	80-120	73-127	
_ead		25.00	26.54	106	80-120	73-127	
Molybdenum		25.00	26.09	104	80-120	73-127	
Nickel		25.00	27.95	112	80-120	73-127	
Selenium		25.00	23.08	92	80-120	73-127	
Silver		12.50	15.12	121	80-120	73-127	ME
Γhallium		25.00	26.60	106	80-120	73-127	
/anadium		25.00	26.05	104	80-120	73-127	
Zinc		25.00	25.91	104	80-120	73-127	

Total number of LCS compounds: 16 Total number of ME compounds: 1

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-07-0556 EPA 7471A Total EPA 7471A

07/09/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 4

Quality Control Sample ID	Туре	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-376	LCS	Solid	Mercury 05 0	07/09/14	07/09/14 21:07	140709L09
<u>Parameter</u>		Spike Added	Conc. Recovered	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.8350	0.7988	96	85-12	1

Quality Control - LCS

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received: Work Order: Preparation: Method: 07/09/14 14-07-0556 EPA 3540C EPA 8082

Page 4 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-02-003-283	LCS	Solid	GC 66	07/09/14	07/11/14 10:01	140709L18
Parameter		Spike Added	Conc. Recovere	ed LCS %R	ec. %Rec	. CL Qualifiers
Aroclor-1016		100.0	82.95	83	50-13	5
Aroclor-1260		100.0	98.80	99	60-130)

Sample Analysis Summary Report

Work Order: 14-07-0556				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6010B	EPA 3050B	469	ICP 7300	1
EPA 7471A	EPA 7471A Total	915	Mercury 05	1
EPA 8015B (M)	EPA 3550B	847	GC 46	1
FPA 8082	EPA 3540C	842	GC 66	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 14-07-0556 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- concentration by a factor of four or greater.

 SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

ECORD		(, T, /	111 - 0 - 111		
ME: 70%	1 Cast Mate Paci	CHEW INSORMATION: A # 1 12 0	REPORTING REQUIREMENTS:	PAGE OF	
PROJECT NUMBER: 0106270030 RESULTS TO: 4 NA (ON IAN)	ASCIENCE TORY ADDRESS:	TAMES OF THE STATE		14-07-0556	
工	A POSSING CONTAGE !				·····
SAMPLE SHIPMEN I MELHOD:	Jove Nowak		GEOTRACKER REQUIRED	YES (NO)	-
)	LABORATORY PHONE NUMBER:		SITE SPECIFIC GLOBAL ID NO.		
SAMPLERS (SIGNATURE):	S ANALYSES	SES			
Nim Good of Cheminsoly	O S MPW E:		(W), ther (O)	SJE	······································
The state of the s	108 TE				
SAMPLE SAMPLE DATE TIME NUMBER	493 1116 3 115 115 115 115	CON	CONTAINER (S), (V) TYPE AND SIZE (S), (V) CONTAINER (S), (V) SOII (S), (V)	Cooled MS/MSI COMMENTS	,
7-9-14 0823 925-V-RIK-SS-001		402 ala	02 alass jar S	X	
	× × × %)		<u>`</u>	
3 0827 925-V-KIR-55-003	203 X X X		5	×	
4-50-83 425-V-R/R-55-004			S	×	
1-7-54 8 5-1-1	205 × × ×		S	-	· · · · · · · · · · · · · · · · · · ·
6 0836 925-V-R/R-55-006	w6 × × ×		S	×	
0837935-V-K	2001 x x x		Ŋ	7	
58-M	×		2	×	
1100 W-84	×		5	×:	
\mathcal{M}	×		\ \ -		
98-M 8011 1	×		5	×	—т
1109 W-87			5	X	
1110 W-88	×		اري ا	×	<u> </u>
1111 M-89	×		<u> </u>	×	
T STAG	TIME DECEIVED BY:	DATE TIME TOTAL NUMBER OF CONTAINERS:	TAINERS:		<u>'</u>
Jan 1	-	.			1
PRINTED DONE SIN FLUE AND 19/10	(35 PRINTED NAME: 472	61 13/			T
COMPANY ANTES	151				· · · · · ·
May 11		1/1			Pag
16/	17 PRINTED NAME: CINE	14 h/h/		о при манитальной положения подроднующих разроднях подавления в при	je 4:
116	- 1			4907	5 OI
SIGNATURE:	SIGNATURE: PRINTED NAME:	121 Innovati	121 Innovation Drive, Suite 200 Invine California 92617-3094		46
PKIN LED NAME.	COMPANY	Tel 949 642 0245	45 Fax 949.642.4474		
COMPANI.			- 1		7

Return to Contents

Cooler _/_ of _

Calscience

WORK ORDER #: 14-07- @ 5 5 6

SAMPLE RECEIPT FORM

CLIENT: ALEC	DATE:	07/9/14
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not Temperature 2.7 °C - 0.3 °C (CF) = 2.4 °C	Blank	
☐ Sample(s) outside temperature criteria (PM/APM contacted by:		Jing
☐ Sample(s) outside temperature criteria but received on ice/chilled on s		ming.
☐ Received at ambient temperature, placed on ice for transport	by Courier.	Checked by: 678
Ambient Temperature: ☐ Air ☐ Filter	3 T 3 S S	Checked by. 5 75
CUSTODY SEALS INTACT:		
□ Cooler □ □ No (Not Intact) ☑ Not Pre	esent □ N/A	Checked by: 678
□ Sample □ □ No (Not Intact) ✓ Not Pre		Checked by: 802
SAMPLE CONDITION:	Yes	No N/A
Chain-Of-Custody (COC) document(s) received with samples		
COC document(s) received complete	⊅	
☐ Collection date/time, matrix, and/or # of containers logged in based on sample	labels.	
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished	1	
Sampler's name indicated on COC		
Sample container label(s) consistent with COC	- /	
Sample container(s) intact and good condition	/-	
Proper containers and sufficient volume for analyses requested	Д	
Analyses received within holding time	<u>Þ</u>	
Aqueous samples received within 15-minute holding time		,
□ pH □ Residual Chlorine □ Dissolved Sulfides □ Dissolved Oxygen	🗖	
Proper preservation noted on COC or sample container	🗖	7
☐ Unpreserved vials received for Volatiles analysis		
Volatile analysis container(s) free of headspace		
Tedlar bag(s) free of condensation CONTAINER TYPE:		
Solid: ☑4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □Er	nCores [®] □Terr	aCores [®] □
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125A	AGB p □1AGB	□1AGB na ₂ □1AGBs
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250	CGBs □1PB	□1PB na □500PB
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na ₂		
Air: □Tedlar [®] □Canister Other: □ Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag	Labele	

Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ u: Ultra-pure znna: ZnAc₂+NaOH f: Filtered

Scanned by:

Calscience

WORK ORDER NUMBER: 14-07-0966

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate / 0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

ResultLink >

Email your PM >

Approved for release on 07/18/2014 by: Stephen Nowak

Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	Former Pechiney Cast Plate / 0106270030

Work Order Number: 14-07-0966

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data	6 6 10 11
5	Quality Control Sample Data.5.1 MS/MSD.5.2 LCS/LCSD.5.2 LCS/LCSD.	12 12 15
6	Sample Analysis Summary	18
7	Glossary of Terms and Qualifiers	19
8	Chain-of-Custody/Sample Receipt Form	20

Work Order Narrative

Work Order: 14-07-0966 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 07/15/14. They were assigned to Work Order 14-07-0966.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order:

14-07-0966

Former Pechiney Cast Plate / 0106270030

Project Name: PO Number:

Date/Time

07/15/14 16:23

Received:

Number of 4

Containers:

Linda Conlan Attn:

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
722-IIA-P/S-SS-001	14-07-0966-1	07/15/14 08:00	1	Solid
#1247	14-07-0966-2	07/15/14 09:37	1	Solid
#1248	14-07-0966-3	07/15/14 09:39	1	Solid
#1249	14-07-0966-4	07/15/14 09:42	1	Solid

Detections Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-07-0966

Project Name: Former Pechiney Cast Plate / 0106270030

Received: 07/15/14

Attn: Linda Conlan Page 1 of 1

Client SampleID							
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction	
#1247 (14-07-0966-2)							
Arsenic	0.760		0.746	mg/kg	EPA 6010B	EPA 3050B	
Barium	315		0.498	mg/kg	EPA 6010B	EPA 3050B	
Beryllium	0.364		0.249	mg/kg	EPA 6010B	EPA 3050B	
Chromium	35.1		0.249	mg/kg	EPA 6010B	EPA 3050B	
Cobalt	10.7		0.249	mg/kg	EPA 6010B	EPA 3050B	
Copper	19.8		0.498	mg/kg	EPA 6010B	EPA 3050B	
Lead	9.66		0.498	mg/kg	EPA 6010B	EPA 3050B	
Nickel	12.5		0.249	mg/kg	EPA 6010B	EPA 3050B	
Vanadium	34.7		0.249	mg/kg	EPA 6010B	EPA 3050B	
Zinc	75.7		0.995	mg/kg	EPA 6010B	EPA 3050B	
Mercury	0.110		0.0862	mg/kg	EPA 7471A	EPA 7471A Total	
#1248 (14-07-0966-3)							
Barium	137		0.498	mg/kg	EPA 6010B	EPA 3050B	
Beryllium	0.396		0.249	mg/kg	EPA 6010B	EPA 3050B	
Chromium	18.6		0.249	mg/kg	EPA 6010B	EPA 3050B	
Cobalt	11.8		0.249	mg/kg	EPA 6010B	EPA 3050B	
Copper	18.9		0.498	mg/kg	EPA 6010B	EPA 3050B	
Lead	5.25		0.498	mg/kg	EPA 6010B	EPA 3050B	
Nickel	13.0		0.249	mg/kg	EPA 6010B	EPA 3050B	
Vanadium	38.2		0.249	mg/kg	EPA 6010B	EPA 3050B	
Zinc	69.3		0.995	mg/kg	EPA 6010B	EPA 3050B	
#1249 (14-07-0966-4)							
Barium	143		0.503	mg/kg	EPA 6010B	EPA 3050B	
Beryllium	0.387		0.251	mg/kg	EPA 6010B	EPA 3050B	
Chromium	17.5		0.251	mg/kg	EPA 6010B	EPA 3050B	
Cobalt	11.7		0.251	mg/kg	EPA 6010B	EPA 3050B	
Copper	21.7		0.503	mg/kg	EPA 6010B	EPA 3050B	
Lead	13.3		0.503	mg/kg	EPA 6010B	EPA 3050B	
Nickel	13.4		0.251	mg/kg	EPA 6010B	EPA 3050B	
Vanadium	37.6		0.251	mg/kg	EPA 6010B	EPA 3050B	
Zinc	78.7		1.01	mg/kg	EPA 6010B	EPA 3050B	

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Date Received:

Work Order:

Preparation:

Method: EPA 6010B Units: mg/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 1 of 4

07/15/14

14-07-0966 EPA 3050B

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1247	14-07-0966-2-A	07/15/14 09:37	Solid	ICP 7300	07/15/14	07/17/14 14:26	140715L03
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.746	0.995		
Arsenic		0.760	(0.746	0.995		
Barium		315	(0.498	0.995		
Beryllium		0.364	(0.249	0.995		
Cadmium		ND	(0.498	0.995		
Chromium		35.1	(0.249	0.995		
Cobalt		10.7	(0.249	0.995		
Copper		19.8	(0.498	0.995		
Lead		9.66	(0.498	0.995		
Molybdenum		ND	(0.249	0.995		
Nickel		12.5	(0.249	0.995		
Selenium		ND	(0.746	0.995		
Silver		ND	(0.249	0.995		
Thallium		ND	(0.746	0.995		
Vanadium		34.7	(0.249	0.995		
Zinc		75.7	(0.995	0.995		

Page 2 of 4

Barium

Beryllium

Cadmium

Chromium

Cobalt

Copper

Molybdenum

Lead

Nickel

Silver

Zinc

Selenium

Thallium

Vanadium

Project: Former Pechiney Cast Plate / 0106270030

Analytical Report

AMEC Environment & Infrastructure

Date Received:

07/15/14

121 Innovation Drive, Suite 200

Work Order:

14-07-0966

Irvine, CA 92617-3094

Preparation:

EPA 3050B

Method:

EPA 6010B

Units: mg/kg

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

0.995

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1248	14-07-0966-3-A	07/15/14 09:39	Solid	ICP 7300	07/15/14	07/17/14 14:27	140715L03
<u>Parameter</u>		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	0	0.746	0.995		
Arsenic		ND	0).746	0.995		

0.498

0.249

0.498

0.249

0.249

0.498

0.498

0.249

0.249

0.746

0.249

0.746

0.249

0.995

137

ND

18.6

11.8

18.9

5.25

ND

13.0

ND

ND

ND

38.2

69.3

0.396

AMEC Environment & Infrastructure
121 Innovation Drive, Suite 200
Irvine, CA 92617-3094

Date Received: 07/15/14
Work Order: 14-07-0966
Preparation: EPA 3050B
Method: EPA 6010B
Units: mg/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1249	14-07-0966-4-A	07/15/14 09:42	Solid	ICP 7300	07/15/14	07/17/14 14:28	140715L03
<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>DF</u> <u>Qualif</u>	
Antimony		ND	().754	1.01		
Arsenic		ND	().754	1.01		
Barium		143	(0.503	1.01		
Beryllium		0.387	().251	1.01		
Cadmium		ND	(0.503	1.01		
Chromium		17.5	().251	1.01		
Cobalt		11.7	().251	1.01		
Copper		21.7	(0.503	1.01		
Lead		13.3	(0.503	1.01		
Molybdenum		ND	().251	1.01		
Nickel		13.4	().251	1.01		
Selenium		ND	().754	1.01		
Silver		ND	().251	1.01		
Thallium		ND	().754	1.01		
Vanadium		37.6	().251	1.01		
Zinc		78.7	1	1.01	1.01		

Units:

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received:
Work Order:
Preparation:
Method:

14-07-0966 EPA 3050B EPA 6010B

07/15/14

mg/kg

Project: Former Pechiney Cast Plate / 0106270030

Γime QC Batch I

Page 4 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-18603	N/A	Solid	ICP 7300	07/15/14	07/16/14 13:09	140715L03
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().750	1.00		
Arsenic		ND	().750	1.00		
Barium		ND	(0.500	1.00		
Beryllium		ND	().250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		ND	(0.250	1.00		
Cobalt		ND	(0.250	1.00		
Copper		ND	(0.500	1.00		
Lead		ND	(0.500	1.00		
Molybdenum		ND	(0.250	1.00		
Nickel		ND	(0.250	1.00		
Selenium		ND	().750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	(0.750	1.00		
Vanadium		ND	().250	1.00		
Zinc		ND	1	.00	1.00		

07/15/14

14-07-0966

Page 1 of 1

Analytical Report

AMEC Environment & Infrastructure Date Received: Work Order: 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Preparation: EPA 7471A Total

Method: **EPA 7471A** Units: mg/kg

Project: Former Pechiney Cast Plate / 0106270030

Client Sample Number	Lab Sample Number 14-07-0966-2-A	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1247	14-07-0966-2-A	07/15/14	Solid	Mercury 05	07/16/14	07/16/14	140/16L01

<u>Parameter</u> Result <u>RL</u> <u>DF</u> Qualifiers 0.110 0.0862 1.00 Mercury

07/15/14 09:39 07/16/14 19:10 #1248 140716L01 14-07-0966-3-A Solid Mercury 05 07/16/14 <u>Parameter</u> Result <u>RL</u> <u>DF</u> Qualifiers Mercury ND 0.0847 1.00

#1249	14-07-0966-4-A	07/15/14 09:42	Solid	Mercury 05	07/16/14	07/16/14 19:01	140716L01
<u>Parameter</u>	·	Result	RL		<u>DF</u>	Qua	alifiers
Mercury		ND	0.0	833	1.00		

Method Blank	099-16-272-388	N/A	Solid	Mercury 05	07/16/14	07/16/14 18:56	140716L01
Parameter		Result	RL		<u>DF</u>	<u>Quali</u>	<u>fiers</u>
Mercury		ND	0.0	833	1.00		

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 07/15/14 14-07-0966 EPA 3540C EPA 8082

Units:

ug/kg

Project: Former Pechiney Cast Plate / 0106270030

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
722-IIA-P/S-SS-001	14-07-0966-1-A	07/15/14 08:00	Solid	GC 58	07/15/14	07/17/14 12:17	140715L16
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Coi	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		107	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		104	50-	130			

Method Blank	099-02-003-285	N/A	Solid GC 58	3 07/15/14	07/17/14 11:41	140715L16
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Lin	mits Qualifiers		
Decachlorobiphenyl		112	60-125			
2,4,5,6-Tetrachloro-m-Xylene		108	50-130			

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure Date Received: 07/15/14
121 Innovation Drive, Suite 200 Work Order: 14-07-0966
Irvine, CA 92617-3094 Preparation: EPA 3050B
Method: EPA 6010B

Project: Former Pechiney Cast Plate / 0106270030 Page 1 of 3

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepare	d Date Ana	lyzed	MS/MSD Ba	tch Number
14-07-0755-17	Sample		Solid	ICP	7300	07/15/14	07/16/14	21:25	140715S03	
14-07-0755-17	Matrix Spike		Solid	ICP	7300	07/15/14	07/16/14	12:50	140715S03	
14-07-0755-17	Matrix Spike	Duplicate	Solid	ICP	7300	07/15/14	07/16/14	12:51	140715S03	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	12.61	50	13.52	54	50-115	7	0-20	
Arsenic	2.248	25.00	28.36	104	28.51	105	75-125	1	0-20	
Barium	31.95	25.00	57.62	103	57.84	104	75-125	0	0-20	
Beryllium	ND	25.00	26.47	106	26.61	106	75-125	0	0-20	
Cadmium	ND	25.00	26.02	104	26.17	105	75-125	1	0-20	
Chromium	7.940	25.00	34.12	105	33.88	104	75-125	1	0-20	
Cobalt	3.303	25.00	30.83	110	30.59	109	75-125	1	0-20	
Copper	2.069	25.00	27.70	103	28.02	104	75-125	1	0-20	
Lead	0.9066	25.00	27.97	108	27.39	106	75-125	2	0-20	
Molybdenum	ND	25.00	26.05	104	25.74	103	75-125	1	0-20	
Nickel	5.780	25.00	32.24	106	32.07	105	75-125	1	0-20	
Selenium	ND	25.00	24.43	98	24.51	98	75-125	0	0-20	
Silver	ND	12.50	12.94	103	13.09	105	75-125	1	0-20	
Thallium	ND	25.00	24.13	97	24.27	97	75-125	1	0-20	
Vanadium	12.53	25.00	38.82	105	38.69	105	75-125	0	0-20	
Zinc	17.52	25.00	41.84	97	41.98	98	75-125	0	0-20	

Page 2 of 3

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure

Date Received:

07/15/14

121 Innovation Drive, Suite 200

Work Order:

14-07-0966

Irvine, CA 92617-3094

Preparation:

Method:

EPA 7471A Total

Method:

Project: Former Pechiney Cast Plate / 0106270030

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
#1249	Sample		Solid	Merc	cury 05	07/16/14	07/16/14	19:01	140716S01	
#1249	Matrix Spike		Solid	Merc	cury 05	07/16/14	07/16/14	19:03	140716S01	
#1249	Matrix Spike D	Ouplicate	Solid	Merc	cury 05	07/16/14	07/16/14	19:05	140716S01	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	ND	0.8350	0.9425	113	0.9389	112	71-137	0	0-14	

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure Date Received: 07/15/14
121 Innovation Drive, Suite 200 Work Order: 14-07-0966
Irvine, CA 92617-3094 Preparation: EPA 3540C
Method: EPA 8082

Project: Former Pechiney Cast Plate / 0106270030 Page 3 of 3

Quality Control Sample ID	Туре		Matrix	Insti	ument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
722-IIA-P/S-SS-001	Sample		Solid	GC	58	07/15/14	07/17/14	12:17	140715S16	
722-IIA-P/S-SS-001	Matrix Spike		Solid	GC	58	07/15/14	07/17/14	12:35	140715S16	
722-IIA-P/S-SS-001	Matrix Spike	Duplicate	Solid	GC	58	07/15/14	07/17/14	13:11	140715S16	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Aroclor-1016	ND	100.0	91.72	92	100.8	101	50-135	9	0-25	
Aroclor-1260	ND	100.0	98.94	99	101.1	101	50-135	2	0-25	

Quality Control - LCS

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 07/15/14 14-07-0966 EPA 3050B EPA 6010B

Project: Former Pechiney Cast Plate / 0106270030

Page 1 of 3

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prepa	ared Date Analy	zed LCS Batch I	Number
097-01-002-18603	LCS	Solid	ICP 7300	07/15/14	07/16/14 1	3:19 140715L03	
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony		25.00	27.85	111	80-120	73-127	
Arsenic		25.00	25.65	103	80-120	73-127	
Barium		25.00	25.75	103	80-120	73-127	
Beryllium		25.00	24.79	99	80-120	73-127	
Cadmium		25.00	25.96	104	80-120	73-127	
Chromium		25.00	25.98	104	80-120	73-127	
Cobalt		25.00	27.96	112	80-120	73-127	
Copper		25.00	25.42	102	80-120	73-127	
Lead		25.00	27.14	109	80-120	73-127	
Molybdenum		25.00	26.54	106	80-120	73-127	
Nickel		25.00	27.08	108	80-120	73-127	
Selenium		25.00	24.21	97	80-120	73-127	
Silver		12.50	12.90	103	80-120	73-127	
Thallium		25.00	26.72	107	80-120	73-127	
Vanadium		25.00	25.25	101	80-120	73-127	
Zinc		25.00	26.02	104	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

Quality Control - LCS

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate / 0106270030

Date Received: Work Order: Preparation: Method:

14-07-0966 EPA 7471A Total EPA 7471A

07/15/14

Page 2 of 3

Quality Control Sample ID	Type	Matrix	Instrument I	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-388	LCS	Solid	Mercury 05	07/16/14	07/16/14 18:58	140716L01
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.8350	0.9352	112	85-12°	1

Quality Control - LCS

AMEC Environment & Infrastructure Date Received: 07/15/14 121 Innovation Drive, Suite 200 Work Order: 14-07-0966 Preparation: EPA 3540C Irvine, CA 92617-3094 Method: EPA 8082 Page 3 of 3

Project: Former Pechiney Cast Plate / 0106270030

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared D	ate Analyzed LCS E	Batch Number
099-02-003-285	LCS	Solid	GC 58	07/15/14 0	7/17/14 11:59 14071	5L16
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Rec.	%Rec. CL	Qualifiers
Aroclor-1016		100.0	113.3	113	50-135	
Aroclor-1260		100.0	98.28	98	60-130	

RPD: Relative Percent Difference. CL: Control Limits

Sample Analysis Summary Report

Work Order: 14-07-0966				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6010B	EPA 3050B	469	ICP 7300	1
EPA 7471A	EPA 7471A Total	915	Mercury 05	1
EPA 8082	EPA 3540C	842	GC 58	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 14-07-0966 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- concentration by a factor of four or greater.
- X % Recovery and/or RPD out-of-range.

SG

Z Analyte presence was not confirmed by second column or GC/MS analysis.

The sample extract was subjected to Silica Gel treatment prior to analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

STODY RECORD	V Cast Plate Facilit	>	DATE: 7 - 15 - 14	NB 31659 PAGE / OF /	
	LABORATORY, NAME: PHP. CLIENT INFORMATION:	AMERICA	REPORTING REQUIREMENTS:		
a Con lan	LABORATORY ADDRESS:			9960-70-7	·
SAMPLE SHIPMENT METHOD:	LEBORATORY CONTACT 111/11 K		ОЕОТВАСКЕВ ВЕОТИВЕР	Vec N	
ab courier	LABORÁTORY PHONE NUMBER:		SITE SPECIFIC GLOBAL ID NO.		
AMPLERS (SIGNATURE):	ANALYSES				
nunderlighthorninsky-	£808.		Vater (W), O) To Other (O)	Steniistr	
DATE TIME SAMPLE NUMBER	9HJ	CONTAINER TYPE AND SIZE		Cooled MS/MSD COMMENTS	
133	×	402 glass ia		×	
	×	>	ら い っ	-	
00039 #1848	× ×		S (4)	~ -	
		*)		
	Å				
				441	
			/		
RELINQUISHED BY: DATE TIME	RECEIVED BY: DATE	TIME TOTAL NUMBER OF CONTAINERS:	VERS:	(h)	
PHINIST LINGS TO NO.	PRINTED NAME:	(人な) SAMPLING COMMENTS:			
TAMES .	SIGNATURE	A. C.			Pa
PRINTED NAME: COMPANY: And And	PRINTED NAME: VOLUME COMPANY COMPANY COMPANY	.			ge 20 (
SIGNATURE FORM / 1/4 16 28 PRINTED WAY 16 28	SIGNATURE: PRINTED NAME: S. COMPANY:	121 Innovation Irvine, Californ Tel 949.642.0245	121 Innovation Drive, Suite 200 Irvine, California 92617-3094 49.642.0245 Fax 949.642.4474	Same)I Z I
<i>→</i>	<i>p</i>				

Return to Contents

Calscience

WORK ORDER #: 14-07- 2 2 6

SAMPLE RECEIPT FORM

Cooler __/ of _/_

CLIENT: DATE:)7/14/	<u>14</u>
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozen except sedin	ment/tissue)	
Temperature36 °C - 0.3 °C (CF) =33 °C ☐ Blank	☐ Sample	
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)		
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling	J .	
☐ Received at ambient temperature, placed on ice for transport by Courier.		
Ambient Temperature: ☐ Air ☐ Filter	Checked by:	<i>£</i> 03
CUSTODY SEALS INTACT:		Q\-7
□ Cooler □ □ No (Not Intact) ☑ Not Present □ N/A o		
□ Sample □ □ No (Not Intact) ✓ Not Present	Checked by: _	Jry_
SAMPLE CONDITION: Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples		
COC document(s) received complete		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.		
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.		
Sampler's name indicated on COC		
Sample container label(s) consistent with COC		
Sample container(s) intact and good condition		
Proper containers and sufficient volume for analyses requested		
Analyses received within holding time		
Aqueous samples received within 15-minute holding time		
□ pH □ Residual Chlorine □ Dissolved Sulfides □ Dissolved Oxygen □		A
Proper preservation noted on COC or sample container		Z
☐ Unpreserved vials received for Volatiles analysis		
Volatile analysis container(s) free of headspace □		
Tedlar bag(s) free of condensation □ CONTAINER TYPE:		7
Solid: ☑4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores® □TerraCo	ores® 🗆	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB □1	AGB na₂ □1	AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □	1PB na □50	00PB
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na₂ □ □		
Air: □Tedlar [®] □Canister Other: □ Trip Blank Lot#: Labeled/C	hecked by: _	8116
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope Rev	viewed by: _{	<u> </u>

Calscience

WORK ORDER NUMBER: 14-08-0206

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate Facility /

0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

Approved for release on 08/06/2014 by:

Stephen Nowak Project Manager

nelac

ResultLink ▶

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	Former Pechiney Cast Plate Facility / 0106270030
----------------------	--

Work Order Number: 14-08-0206

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA 8015B (M) C6-C44 (Solid). 4.2 EPA 6010B/7471A CAC Title 22 Metals (Solid). 4.3 EPA 7471A Mercury (Solid). 4.4 EPA 8082 PCB Aroclors (Solid).	8 11 16 17
5	Quality Control Sample Data. 5.1 MS/MSD. 5.2 LCS/LCSD.	19 19 22
6	Sample Analysis Summary	26
7	Glossary of Terms and Qualifiers	27
8	Chain-of-Custody/Sample Receipt Form	28

Work Order Narrative

Work Order: 14-08-0206 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 08/04/14. They were assigned to Work Order 14-08-0206.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order:

Former Pechiney Cast Plate Facility /

0106270030

14-08-0206

PO Number:

Project Name:

Date/Time 08/04/14 17:30

Received:

Number of 4

Containers:

Attn: Linda Conlan

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
#1332	14-08-0206-1	08/04/14 12:39	1	Solid
#1333	14-08-0206-2	08/04/14 12:41	1	Solid
925-V-R/R-SS-008	14-08-0206-3	08/04/14 12:59	1	Solid
925-V-R/R-SS-009	14-08-0206-4	08/04/14 13:01	1	Solid

Detections Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-08-0206

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

08/04/14 Received:

Page 1 of 3 Attn: Linda Conlan

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1332 (14-08-0206-1)						
Arsenic	11.3		0.743	mg/kg	EPA 6010B	EPA 3050B
Barium	205		0.495	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.323		0.248	mg/kg	EPA 6010B	EPA 3050B
Cadmium	1.23		0.495	mg/kg	EPA 6010B	EPA 3050B
Chromium	25.3		0.248	mg/kg	EPA 6010B	EPA 3050B
Cobalt	15.3		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper	109		0.495	mg/kg	EPA 6010B	EPA 3050B
Lead	197		0.495	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	1.24		0.248	mg/kg	EPA 6010B	EPA 3050B
Nickel	29.7		0.248	mg/kg	EPA 6010B	EPA 3050B
Vanadium	32.1		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc	386		0.990	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.358		0.0746	mg/kg	EPA 7471A	EPA 7471A Total
#1333 (14-08-0206-2)						
Arsenic	5.08		0.743	mg/kg	EPA 6010B	EPA 3050B
Barium	159		0.495	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.347		0.248	mg/kg	EPA 6010B	EPA 3050B
Chromium	17.2		0.248	mg/kg	EPA 6010B	EPA 3050B
Cobalt	13.4		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper	46.9		0.495	mg/kg	EPA 6010B	EPA 3050B
Lead	35.5		0.495	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.288		0.248	mg/kg	EPA 6010B	EPA 3050B
Nickel	42.6		0.248	mg/kg	EPA 6010B	EPA 3050B
Vanadium	37.4		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc	129		0.990	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Detections Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-08-0206

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

08/04/14 Received:

Attn: Linda Conlan Page 2 of 3

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
925-V-R/R-SS-008 (14-08-0206-3)						
Arsenic	3.52		0.758	mg/kg	EPA 6010B	EPA 3050B
Barium	154		0.505	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.316		0.253	mg/kg	EPA 6010B	EPA 3050B
Chromium	26.6		0.253	mg/kg	EPA 6010B	EPA 3050B
Cobalt	14.2		0.253	mg/kg	EPA 6010B	EPA 3050B
Copper	103		0.505	mg/kg	EPA 6010B	EPA 3050B
Lead	47.8		0.505	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.458		0.253	mg/kg	EPA 6010B	EPA 3050B
Nickel	48.3		0.253	mg/kg	EPA 6010B	EPA 3050B
Vanadium	28.1		0.253	mg/kg	EPA 6010B	EPA 3050B
Zinc	195		1.01	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.101		0.0820	mg/kg	EPA 7471A	EPA 7471A Total
C23-C24	6.5		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C25-C28	9.0		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C29-C32	16		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C33-C36	8.8		4.9	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	50		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
Aroclor-1248	66		50	ug/kg	EPA 8082	EPA 3540C
25-V-R/R-SS-009 (14-08-0206-4)						
Arsenic	10.3		0.754	mg/kg	EPA 6010B	EPA 3050B
Barium	729		0.503	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.321		0.251	mg/kg	EPA 6010B	EPA 3050B
Cadmium	13.9		0.503	mg/kg	EPA 6010B	EPA 3050B
Chromium	190		0.251	mg/kg	EPA 6010B	EPA 3050B
Cobalt	31.8		0.251	mg/kg	EPA 6010B	EPA 3050B
Copper	538		0.503	mg/kg	EPA 6010B	EPA 3050B
Lead	798		0.503	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	8.33		0.251	mg/kg	EPA 6010B	EPA 3050B
Nickel	103		0.251	mg/kg	EPA 6010B	EPA 3050B
Vanadium	36.7		0.251	mg/kg	EPA 6010B	EPA 3050B
Zinc	2670		1.01	mg/kg	EPA 6010B	EPA 3050B
Mercury	1.97		0.167	mg/kg	EPA 7471A	EPA 7471A Total
C29-C32	38		25	mg/kg	EPA 8015B (M)	EPA 3550B
C6-C44 Total	85		5.0	mg/kg	EPA 8015B (M)	EPA 3550B
Aroclor-1248	91		50	ug/kg	EPA 8082	EPA 3540C
Aroclor-1260	51		50	ug/kg	EPA 8082	EPA 3540C

^{*} MDL is shown

Detections Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-08-0206

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 08/04/14

Attn: Linda Conlan Page 3 of 3

Client SampleID

Analyte Result Qualifiers <u>Units</u> **Method Extraction** <u>RL</u>

Subcontracted analyses, if any, are not included in this summary.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-08-0206 EPA 3550B EPA 8015B (M)

08/04/14

Units: mg/kg
Page 1 of 3

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-0	008	14-08-0206-3-A	08/04/14 12:59	Solid	GC 45	08/04/14	08/05/14 04:29	140804B07
Comment(s):	- The total concentration	includes individual ca	rbon range cond	centrations (es	stimated), if any	, below the RL	reported as ND.	
<u>Parameter</u>			<u>Result</u>	RL	=	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
C6			ND	4.9	9	1.00		
C7			ND	4.9	9	1.00		
C8			ND	4.9	9	1.00		
C9-C10			ND	4.9	9	1.00		
C11-C12			ND	4.9	9	1.00		
C13-C14			ND	4.9	9	1.00		
C15-C16			ND	4.9	9	1.00		
C17-C18			ND	4.9	9	1.00		
C19-C20			ND	4.9	9	1.00		
C21-C22			ND	4.9	9	1.00		
C23-C24			6.5	4.9	9	1.00		
C25-C28			9.0	4.9	9	1.00		
C29-C32			16	4.9	9	1.00		
C33-C36			8.8	4.9	e	1.00		
C37-C40			ND	4.9	9	1.00		
C41-C44			ND	4.9	9	1.00		
C6-C44 Total			50	5.0)	1.00		
<u>Surrogate</u>			Rec. (%)	Co	ontrol Limits	Qualifiers		
n-Octacosane			61	61	-145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 08/04/14 14-08-0206 EPA 3550B

Method: EPA 8015B (M) Units: mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 3

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
925-V-R/R-SS-	009	14-08-0206-4-A	08/04/14 13:01	Solid	GC 45	08/04/14	08/05/14 04:46	140804B07	
Comment(s):	- The total concentration includes individual carbon range concentrations (estimated), if any, below the RL reported as ND.								
<u>Parameter</u>			Result	<u>RL</u>		<u>DF</u>	Qua	<u>alifiers</u>	
C6			ND	25		5.00			
C7			ND	25		5.00			
C8			ND	25		5.00			
C9-C10			ND	25		5.00			
C11-C12			ND	25		5.00			
C13-C14			ND	25		5.00			
C15-C16			ND	25		5.00			
C17-C18			ND	25		5.00			
C19-C20			ND	25		5.00			
C21-C22			ND	25		5.00			
C23-C24			ND	25		5.00			
C25-C28			ND	25		5.00			
C29-C32			38	25		5.00			
C33-C36			ND	25		5.00			
C37-C40			ND	25		5.00			
C41-C44			ND	25		5.00			
C6-C44 Total			85	5.0		1.00			
Surrogate			Rec. (%)	Con	trol Limits	Qualifiers			
n-Octacosane			70	61-1	145				

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 08/04/14 14-08-0206 EPA 3550B

Units:

EPA 8015B (M) mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-1065	N/A	Solid	GC 45	08/04/14	08/04/14 22:54	140804B07
<u>Parameter</u>		Result	RL		<u>DF</u>	Qua	<u>alifiers</u>
C6		ND	5.0		1.00		
C7		ND	5.0		1.00		
C8		ND	5.0		1.00		
C9-C10		ND	5.0		1.00		
C11-C12		ND	5.0		1.00		
C13-C14		ND	5.0		1.00		
C15-C16		ND	5.0		1.00		
C17-C18		ND	5.0		1.00		
C19-C20		ND	5.0		1.00		
C21-C22		ND	5.0		1.00		
C23-C24		ND	5.0		1.00		
C25-C28		ND	5.0		1.00		
C29-C32		ND	5.0		1.00		
C33-C36		ND	5.0		1.00		
C37-C40		ND	5.0		1.00		
C41-C44		ND	5.0		1.00		
C6-C44 Total		ND	5.0		1.00		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
n-Octacosane		114	61-	145			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 08/04/14 14-08-0206 EPA 3050B

Units:

EPA 6010B mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1332	14-08-0206-1-A	08/04/14 12:39	Solid	ICP 7300	08/04/14	08/05/14 20:41	140804L07
Parameter		<u>Result</u>	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().743	0.990		
Arsenic		11.3	().743	0.990		
Barium		205	().495	0.990		
Beryllium		0.323	().248	0.990		
Cadmium		1.23	().495	0.990		
Chromium		25.3	().248	0.990		
Cobalt		15.3	().248	0.990		
Copper		109	().495	0.990		
Lead		197	().495	0.990		
Molybdenum		1.24	().248	0.990		
Nickel		29.7	().248	0.990		
Selenium		ND	().743	0.990		
Silver		ND	().248	0.990		
Thallium		ND	().743	0.990		
Vanadium		32.1	().248	0.990		
Zinc		386	().990	0.990		

RL: Reporting Limit. DF: Dilution Factor. MDL:

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-08-0206 EPA 3050B EPA 6010B

08/04/14

Units: mg/kg
Page 2 of 5

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1333	14-08-0206-2-A	08/04/14 12:41	Solid	ICP 7300	08/04/14	08/05/14 20:42	140804L07
Parameter		Result	E	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	C	0.743	0.990		
Arsenic		5.08	C).743	0.990		
Barium		159	C	.495	0.990		
Beryllium		0.347	C).248	0.990		
Cadmium		ND	C	.495	0.990		
Chromium		17.2	C).248	0.990		
Cobalt		13.4	C).248	0.990		
Copper		46.9	C	.495	0.990		
Lead		35.5	C	.495	0.990		
Molybdenum		0.288	C).248	0.990		
Nickel		42.6	C).248	0.990		
Selenium		ND	C).743	0.990		
Silver		ND	C).248	0.990		
Thallium		ND	C).743	0.990		
Vanadium		37.4	C).248	0.990		
Zinc		129	C	.990	0.990		

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

08/04/14 14-08-0206 EPA 3050B

> EPA 6010B mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-008	14-08-0206-3-A	08/04/14 12:59	Solid	ICP 7300	08/04/14	08/05/14 20:43	140804L07
Parameter		<u>Result</u>	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().758	1.01		
Arsenic		3.52	().758	1.01		
Barium		154	().505	1.01		
Beryllium		0.316	().253	1.01		
Cadmium		ND	().505	1.01		
Chromium		26.6	().253	1.01		
Cobalt		14.2	(0.253	1.01		
Copper		103	().505	1.01		
Lead		47.8	().505	1.01		
Molybdenum		0.458	().253	1.01		
Nickel		48.3	().253	1.01		
Selenium		ND	().758	1.01		
Silver		ND	().253	1.01		
Thallium		ND	().758	1.01		
Vanadium		28.1	(0.253	1.01		
Zinc		195	1	.01	1.01		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 08/04/14 14-08-0206 EPA 3050B

Method: EPA 6010B Units: mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 4 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-009	14-08-0206-4-A	08/04/14 13:01	Solid	ICP 7300	08/04/14	08/05/14 20:44	140804L07
<u>Parameter</u>		Result]	RL	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.754	1.01		
Arsenic		10.3	(0.754	1.01		
Barium		729	(0.503	1.01		
Beryllium		0.321	(0.251	1.01		
Cadmium		13.9	(0.503	1.01		
Chromium		190	(0.251	1.01		
Cobalt		31.8	(0.251	1.01		
Copper		538	(0.503	1.01		
Lead		798	(0.503	1.01		
Molybdenum		8.33	(0.251	1.01		
Nickel		103	(0.251	1.01		
Selenium		ND	(0.754	1.01		
Silver		ND	(0.251	1.01		
Thallium		ND	(0.754	1.01		
Vanadium		36.7	(0.251	1.01		
Zinc		2670		1.01	1.01		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 08/04/14 14-08-0206 EPA 3050B EPA 6010B

Units:

mg/kg Page 5 of 5

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-18697	N/A	Solid	ICP 7300	08/04/14	08/05/14 20:19	140804L07
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	C).750	1.00		
Arsenic		ND	C).750	1.00		
Barium		ND	C).500	1.00		
Beryllium		ND	C).250	1.00		
Cadmium		ND	C).500	1.00		
Chromium		ND	C	0.250	1.00		
Cobalt		ND	C	0.250	1.00		
Copper		ND	C	0.500	1.00		
Lead		ND	C	0.500	1.00		
Molybdenum		ND	C).250	1.00		
Nickel		ND	C	0.250	1.00		
Selenium		ND	C).750	1.00		
Silver		ND	C	0.250	1.00		
Thallium		ND	C).750	1.00		
Vanadium		ND	C	0.250	1.00		
Zinc		ND	1	.00	1.00		

AMEC Environment & Infrastructure

Date Received:

Work Order:

14-08-0206

Irvine, CA 92617-3094

Preparation:

Method:

Date Received:

08/04/14

14-08-70206

EPA 7471A Total

Method:

EPA 7471A

			Units:				mg/kg
Project: Former Pechiney Cast P	Plate Facility / 0106	270030				Pa	ge 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1332	14-08-0206-1-A	08/04/14 12:39	Solid	Mercury 04	08/05/14	08/05/14 19:34	140805L06
<u>Parameter</u>		Result	<u>RL</u> <u>DF</u>		Qua	alifiers	
Mercury		0.358		0.0746	1.00		
#1333	14-08-0206-2-A	08/04/14 12:41	Solid	Mercury 04	08/05/14	08/05/14 19:36	140805L06
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers
Mercury		ND		0.0794	1.00		
925-V-R/R-SS-008	14-08-0206-3-A	08/04/14 12:59	Solid	Mercury 04	08/05/14	08/05/14 19:38	140805L06
<u>Parameter</u>		Result	-	RL	<u>DF</u>	Qua	alifiers
Mercury		0.101		0.0820	1.00		
925-V-R/R-SS-009	14-08-0206-4-A	08/04/14 13:01	Solid	Mercury 04	08/05/14	08/06/14 15:19	140805L06
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	<u>alifiers</u>
Mercury		1.97		0.167	2.00		

Method Blank	099-16-272-447	N/A	Solid	Mercury 04	08/05/14	08/05/14 19:05	140805L06
<u>Parameter</u>		<u>Result</u>	<u>RI</u>	=	<u>DF</u>	Qua	<u>llifiers</u>
Mercury		ND	0.0	0833	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

08/04/14 14-08-0206 EPA 3540C EPA 8082

ug/kg Page 1 of 2

Project: Former Pechiney Cast Plate Facility / 0106270030

Constant I

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-008	14-08-0206-3-A	08/04/14 12:59	Solid	GC 31	08/04/14	08/05/14 19:03	140804L12
Parameter		Result	<u>RL</u>		<u>DF</u>	Qua	<u>lifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		66	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Cor	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		115	60-	125			
2,4,5,6-Tetrachloro-m-Xylene		113	50-	130			

925-V-R/R-SS-009	14-08-0206-4-A	08/04/14 13:01	Solid GC 31	08/04/14	08/05/14 19:22	140804L12
Parameter		Result	<u>RL</u>	DF	Qu	ıalifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		91	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		51	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		112	60-125			
2,4,5,6-Tetrachloro-m-Xylene		106	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 08/04/14 14-08-0206 EPA 3540C EPA 8082

Units:

ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-02-003-296	N/A	Solid	GC 31	08/04/14	08/05/14 18:44	140804L12
Parameter		Result	RL	=	DF	Qua	alifiers
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
Surrogate		Rec. (%)	Co	ontrol Limits	Qualifiers		
Decachlorobiphenyl		113	60	-125			
2,4,5,6-Tetrachloro-m-Xylene		107	50	-130			

Page 1 of 3

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure Date Received: 08/04/14
121 Innovation Drive, Suite 200 Work Order: 14-08-0206
Irvine, CA 92617-3094 Preparation: EPA 3550B
Method: EPA 8015B (M)

Project: Former Pechiney Cast Plate Facility / 0106270030

Quality Control Sample ID	Туре		Matrix	Matrix Instrument		Date Prepared	Date Analyzed		MS/MSD Batch Number	
14-08-0057-23	Sample		Solid	GC 45		08/04/14	08/05/14 00:42		140804S07	
14-08-0057-23	Matrix Spike		Solid	GC 4	45	08/04/14	08/04/14	23:30	140804S07	
14-08-0057-23	Matrix Spike Duplicate		Solid	GC 45		08/04/14	8/04/14 08/04/14 23:48		140804S07	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	ND	400.0	266.6	67	261.3	65	64-130	2	0-15	

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure

Date Received:

Work Order:

14-08-0206

Irvine, CA 92617-3094

Preparation:

Method:

Date Received:

08/04/14

Work Order:

14-08-0206

EPA 7471A Total

Method:

EPA 7471A

Project: Former Pechiney Cast Plate Facility / 0106270030 Page 2 of 3

Quality Control Sample ID	Туре	Matrix	Instrument		Date Prepared	Date Analyzed	MS/MSD Batch Number		
14-08-0136-25	Sample	Solid	Mercury 04		08/05/14 08/05/14 19:		9 140805S06		
14-08-0136-25	Matrix Spike	Solid	Mercury 04		08/05/14	8/05/14 08/05/14 19:11		140805S06	
14-08-0136-25	Matrix Spike Duplicate	Solid	Mercury 04		08/05/14	08/05/14 19:14	140805S06		
Parameter	Sample Spike Conc. Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL RP	D RPD CL	Qualifiers	
Mercury	0.1800 0.8350	1.065	106	0.9676	94	71-137 10	0-14		

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure

Date Received:

Work Order:

14-08-0206

Irvine, CA 92617-3094

Preparation:

Method:

EPA 8082

Project: Former Pechiney Cast Plate Facility / 0106270030 Page 3 of 3

Quality Control Sample ID	Туре		Matrix	Instrument		Date Prepared	Date Analyzed		MS/MSD Batch Number	
925-V-R/R-SS-008	Sample		Solid	GC	31	08/04/14	08/05/14	19:03	140804S12	
925-V-R/R-SS-008	Matrix Spike		Solid	GC	31	08/04/14	08/05/14	19:41	140804S12	
925-V-R/R-SS-008	Matrix Spike Duplicate		Solid	GC 31		08/04/14	08/04/14 08/05/14 20:00		140804S12	
Parameter	Sample Conc.	<u>Spike</u> <u>Added</u>	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Aroclor-1016	ND	100.0	97.21	97	114.2	114	50-135	16	0-25	
Aroclor-1260	ND	100.0	103.1	103	156.4	156	50-135	41	0-25	3,4

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received: Work Order: Preparation: Method:

14-08-0206 EPA 3550B EPA 8015B (M)

08/04/14

Page 1 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-490-1065	LCS	Solid	GC 45	08/04/14	08/04/14 23:11	140804B07
Parameter		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
TPH as Diesel		400.0	319.8	80	75-12	3

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 08/04/14 14-08-0206 EPA 3050B EPA 6010B

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 4

Quality Control Sample ID	Type	Matrix	Instrumen	t Date Prepa	red Date Analyzed	LCS Batch Num	ber
097-01-002-18697	LCS	Solid	ICP 7300	08/04/14	08/05/14 20:21	I 140804L07	
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL M	1E CL Q	<u>ualifiers</u>
Antimony		25.00	26.80	107	80-120 7	3-127	
Arsenic		25.00	26.28	105	80-120 7	3-127	
Barium		25.00	27.81	111	80-120 7	3-127	
Beryllium		25.00	26.62	106	80-120 7	3-127	
Cadmium		25.00	27.49	110	80-120 7	3-127	
Chromium		25.00	27.19	109	80-120 7	3-127	
Cobalt		25.00	30.00	120	80-120 7	3-127	
Copper		25.00	28.05	112	80-120 7	3-127	
Lead		25.00	27.69	111	80-120 7	3-127	
Molybdenum		25.00	27.11	108	80-120 7	3-127	
Nickel		25.00	28.46	114	80-120 7	3-127	
Selenium		25.00	24.45	98	80-120 7	3-127	
Silver		12.50	13.30	106	80-120 7	3-127	
Thallium		25.00	27.39	110	80-120 7	3-127	
Vanadium		25.00	27.26	109	80-120 7	3-127	
Zinc		25.00	27.40	110	80-120 7	3-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-08-0206 EPA 7471A Total EPA 7471A

08/04/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 4

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-447	LCS	Solid	Mercury 04	08/05/14	08/05/14 19:07	140805L06
<u>Parameter</u>		Spike Added	Conc. Recovere	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.8350	0.8044	96	85-12°	1

AMEC Environment & Infrastructure Date Received: 08/04/14
121 Innovation Drive, Suite 200 Work Order: 14-08-0206
Irvine, CA 92617-3094 Preparation: EPA 3540C
Method: EPA 8082

Project: Former Pechiney Cast Plate Facility / 0106270030 Page 4 of 4

Quality Control Sample ID	Туре	Matrix	Instrument [Date Prepared	Date Analyzed	LCS Batch Number
099-02-003-296	LCS	Solid	GC 31 0	08/04/14	08/05/14 18:25	140804L12
Parameter		Spike Added	Conc. Recovered	d LCS %Re	ec. %Rec	. CL Qualifiers
Aroclor-1016		100.0	116.4	116	50-13	5
Aroclor-1260		100.0	120.6	121	60-130)

Sample Analysis Summary Report

Work Order: 14-08-0206	Page 1 of 1			
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6010B	EPA 3050B	469	ICP 7300	1
EPA 7471A	EPA 7471A Total	915	Mercury 04	1
EPA 8015B (M)	EPA 3550B	628	GC 45	1
EPA 8082	EPA 3540C	669	GC 31	1

Glossary of Terms and Qualifiers

Work Order: 14-08-0206 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

SG The sample extract was subjected to Silica Gel treatment prior to analysis. % Recovery and/or RPD out-of-range.

Χ

concentration by a factor of four or greater.

Ζ Analyte presence was not confirmed by second column or GC/MS analysis.

> Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

> Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

CHAIN-OF-CUSTODY RECORD					
PROJECT NAME: Former Pechiney	1 Cast Plate Facili	7	DATE: 8-4-14	PAGE / OF /	
18	SCION CO	CLIENTANFORMATION: AME	REPORTING REQUIREMENTS:		- Automotiva and a second
RESULTS TO: LINGO CONIQUE				14-08-0206	
SAMPLE SHIPMENT METHOD:	LABORATORY CONTACT: WAR K		GEOTRACKER REQUIRED	YES	
iascourier	LABORATORY PHONE NUMBER:		SITE SPECIFIC GLOBAL ID NO.		
SAMPLERS (SIGNATURE):	ANALYSES	S			
Winderlof Cheminsky	E808 5108 PM CC		Vafer (W), or Offner (O)	stənistn	n strange MV Man M M V V
SAMPLE SAMPLE NUMBER	. 443 443 443	CON.	CONTAINER SYSTEM SOIL (SY), VERSON SIZE SYSTEM SIZE SYSTEM SIZE SYSTEM SOIL (SY), VERSON SYSTEM SYST	Cooled COMMENTS	AL TS
184-14 1239 #1332			assiar S	- X	
2 1 1341 #1333	X				
1259 925-V-RIR-SS-008	*		S	×>	
4 V 1001 425-V-K/K-55-004X	X X		2		
T-FA C		DATE TIME TOTAL NUMBER OF CONTAINERS:	TAINERS:		1
SPANATURE: // N/ Committee 11ME	SIGNATURE:				
SON THE COMMENT OF TH	here	1445 M			
HMEC 8	SIGNATURE:				
PRINTEE NAME: COMPAN: And	COMPANY: LOT 1164	8/4/4 1525			
AME: KUST 416A-8414 1730	SIGNATURE AIN ULL PRINTED NAMENY LE	121 Innovation (7:30 Irvine, Calif			
COMPANY:	7)	/* / lel 949.042.0243	.5 rax 343.042,4414		

Return to Contents

Calscience

WORK ORDER #: 14-08-02

SAMPLE RECEIPT FORM Cooler / of /

CLIENT: AMEC	DATE: _	08/4	/14
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not froze Temperature	☑ Blank	☐ Sampl	
\square Received at ambient temperature, placed on ice for transport by Co	ourier.		
Ambient Temperature: ☐ Air ☐ Filter		Checked b	ру: <u>67<i>6</i> </u>
CUSTODY SEALS INTACT: Cooler		Checked b	
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	ø		
COC document(s) received complete	A		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sampler's name indicated on COC	Ø		
Sample container label(s) consistent with COC	P		
Sample container(s) intact and good condition	7		
Proper containers and sufficient volume for analyses requested	7		
Analyses received within holding time	9		
Aqueous samples received within 15-minute holding time			
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfides ☐ Dissolved Oxygen	. 🗆		
Proper preservation noted on COC or sample container	. 🗆		
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace	. 🗆		
Tedlar bag(s) free of condensation CONTAINER TYPE:	. 🗆		
Solid: ☐4ozCGJ ☐8ozCGJ ☐16ozCGJ ☐Sleeve () ☐EnCcre	s [®] ⊟Terra	Cores [®] □_	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp			□1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs			
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na₂ □			
Air: Tedlar Canister Other: Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Er Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ -Na	Labeled	Reviewed by	: 787

Calscience

WORK ORDER NUMBER: 14-08-0774

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AMEC Environment & Infrastructure

Client Project Name: Former Pechiney Cast Plate Facility /

0106270030

Attention: Linda Conlan

121 Innovation Drive

Suite 200

Irvine, CA 92617-3094

Approved for release on 08/13/2014 by:

Stephen Nowak

Project Manager

ResultLink > Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Former Pech	iney Cast Plate Facility / 0106270030
----------------------------------	---------------------------------------

Work Order Number: 14-08-0774

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA 6010B/7471A CAC Title 22 Metals (Solid). 4.2 EPA 7471A Mercury (Solid). 4.3 EPA 8082 PCB Aroclors (Solid). 4.3 EPA 8082 PCB Aroclors (Solid).	8 16 17
5	Quality Control Sample Data.5.1 MS/MSD.5.2 LCS/LCSD.5.2 LCS/LCSD.	23 23 26
6	Sample Analysis Summary	29
7	Glossary of Terms and Qualifiers	30
8	Chain-of-Custody/Sample Receipt Form	31

Work Order Narrative

Work Order: 14-08-0774 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 08/11/14. They were assigned to Work Order 14-08-0774.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Sample Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-08-0774

Project Name: Former Pechiney Cast Plate Facility /

0106270030

PO Number:

Date/Time 08/11/14 17:04

Received:

Number of Containers: 9

Attn: Linda Conlan

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
#1332-5	14-08-0774-1	08/11/14 08:10	1	Solid
925-V-R/R-SS-010	14-08-0774-2	08/11/14 10:00	1	Solid
925-V-R/R-SS-011	14-08-0774-3	08/11/14 10:02	1	Solid
925-V-R/R-SS-012	14-08-0774-4	08/11/14 10:04	1	Solid
925-V-R/R-SS-013	14-08-0774-5	08/11/14 10:05	1	Solid
925-V-R/R-SS-014	14-08-0774-6	08/11/14 10:06	1	Solid
925-V-R/R-SS-015	14-08-0774-7	08/11/14 10:07	1	Solid
#1345	14-08-0774-8	08/11/14 14:00	1	Solid
#1346	14-08-0774-9	08/11/14 14:02	1	Solid

Detections Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-08-0774

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 08/11/14

Page 1 of 3 Attn: Linda Conlan

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
#1332-5 (14-08-0774-1)						
Arsenic	1.62		0.750	mg/kg	EPA 6010B	EPA 3050B
Barium	74.6		0.500	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.251		0.250	mg/kg	EPA 6010B	EPA 3050B
Chromium	16.1		0.250	mg/kg	EPA 6010B	EPA 3050B
Cobalt	9.42		0.250	mg/kg	EPA 6010B	EPA 3050B
Copper	16.2		0.500	mg/kg	EPA 6010B	EPA 3050B
Lead	1.56		0.500		EPA 6010B	EPA 3050B
	14.0			mg/kg		
Nickel			0.250	mg/kg	EPA 6010B	EPA 3050B
Vanadium 	25.5		0.250	mg/kg	EPA 6010B	EPA 3050B
Zinc	42.4		1.00	mg/kg	EPA 6010B	EPA 3050B
Aroclor-1248	64		50	ug/kg	EPA 8082	EPA 3540C
925-V-R/R-SS-010 (14-08-0774-2)						
Antimony	2.73		0.743	mg/kg	EPA 6010B	EPA 3050B
Arsenic	1.96		0.743	mg/kg	EPA 6010B	EPA 3050B
Barium	357		0.495	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.353		0.248	mg/kg	EPA 6010B	EPA 3050B
Cadmium	1.47		0.495	mg/kg	EPA 6010B	EPA 3050B
Chromium	19.1		0.248	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.6		0.248	mg/kg	EPA 6010B	EPA 3050B
Copper	73.8		0.495	mg/kg	EPA 6010B	EPA 3050B
Lead	151		0.495	mg/kg	EPA 6010B	EPA 3050B
Nickel	20.1		0.248	mg/kg	EPA 6010B	EPA 3050B
Vanadium	32.5		0.248	mg/kg	EPA 6010B	EPA 3050B
Zinc Mercury	1350 0.162		0.990 0.0820	mg/kg mg/kg	EPA 6010B EPA 7471A	EPA 3050B EPA 7471A Total

^{*} MDL is shown

Detections Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-08-0774

Former Pechiney Cast Plate Facility / 0106270030 Project Name:

Received: 08/11/14

Attn: Linda Conlan Page 2 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
925-V-R/R-SS-011 (14-08-0774-3)						
Arsenic	1.45		0.750	mg/kg	EPA 6010B	EPA 3050B
Barium	223		0.500	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.324		0.250	mg/kg	EPA 6010B	EPA 3050B
Cadmium	1.02		0.500	mg/kg	EPA 6010B	EPA 3050B
Chromium	18.8		0.250	mg/kg	EPA 6010B	EPA 3050B
Cobalt	11.7		0.250	mg/kg	EPA 6010B	EPA 3050B
Copper	56.0		0.500	mg/kg	EPA 6010B	EPA 3050B
Lead	124		0.500	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.436		0.250	mg/kg	EPA 6010B	EPA 3050B
Nickel	15.1		0.250	mg/kg	EPA 6010B	EPA 3050B
Vanadium	30.5		0.250	mg/kg	EPA 6010B	EPA 3050B
Zinc	734		1.00	mg/kg	EPA 6010B	EPA 3050B
925-V-R/R-SS-012 (14-08-0774-4)						
Antimony	1.93		0.739	mg/kg	EPA 6010B	EPA 3050B
Arsenic	3.11		0.739	mg/kg	EPA 6010B	EPA 3050B
Barium	307		0.493	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.354		0.246	mg/kg	EPA 6010B	EPA 3050B
Cadmium	1.46		0.493	mg/kg	EPA 6010B	EPA 3050B
Chromium	23.0		0.246	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.9		0.246	mg/kg	EPA 6010B	EPA 3050B
Copper	91.7		0.493	mg/kg	EPA 6010B	EPA 3050B
Lead	199		0.493	mg/kg	EPA 6010B	EPA 3050B
Molybdenum	0.807		0.246	mg/kg	EPA 6010B	EPA 3050B
Nickel	20.7		0.246	mg/kg	EPA 6010B	EPA 3050B
Vanadium	33.7		0.246	mg/kg	EPA 6010B	EPA 3050B
Zinc	1100		0.985	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.195		0.0806	mg/kg	EPA 7471A	EPA 7471A Total
925-V-R/R-SS-013 (14-08-0774-5)						
Barium	178		0.493	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.360		0.246	mg/kg	EPA 6010B	EPA 3050B
Chromium	17.2		0.246	mg/kg	EPA 6010B	EPA 3050B
Cobalt	12.0		0.246	mg/kg	EPA 6010B	EPA 3050B
Copper	40.2		0.493	mg/kg	EPA 6010B	EPA 3050B
Lead	61.3		0.493	mg/kg	EPA 6010B	EPA 3050B
Nickel	14.1		0.246	mg/kg	EPA 6010B	EPA 3050B
Vanadium	33.9		0.246	mg/kg	EPA 6010B	EPA 3050B
Zinc	338		0.985	mg/kg	EPA 6010B	EPA 3050B

^{*} MDL is shown

Detections Summary

Client: AMEC Environment & Infrastructure

121 Innovation Drive, Suite 200

Irvine, CA 92617-3094

Work Order: 14-08-0774

Project Name: Former Pechiney Cast Plate Facility /

0106270030

Received: 08/11/14

Attn: Linda Conlan Page 3 of 3

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
925-V-R/R-SS-014 (14-08-0774-6)						
Barium	185		0.490	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.312		0.490	mg/kg	EPA 6010B	EPA 3050B
Chromium	15.0		0.245		EPA 6010B	EPA 3050B
Cobalt	10.1		0.245	mg/kg	EPA 6010B	EPA 3050B
	40.0			mg/kg		
Copper			0.490	mg/kg	EPA 6010B	EPA 3050B
Lead	64.5		0.490	mg/kg	EPA 6010B	EPA 3050B
Nickel	12.3		0.245	mg/kg	EPA 6010B	EPA 3050B
Vanadium 	29.0		0.245	mg/kg	EPA 6010B	EPA 3050B
Zinc	403		0.980	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.957		0.0833	mg/kg	EPA 7471A	EPA 7471A Total
925-V-R/R-SS-015 (14-08-0774-7)						
Arsenic	1.07		0.739	mg/kg	EPA 6010B	EPA 3050B
Barium	150		0.493	mg/kg	EPA 6010B	EPA 3050B
Beryllium	0.336		0.246	mg/kg	EPA 6010B	EPA 3050B
Chromium	15.2		0.246	mg/kg	EPA 6010B	EPA 3050B
Cobalt	10.9		0.246	mg/kg	EPA 6010B	EPA 3050B
Copper	27.5		0.493	mg/kg	EPA 6010B	EPA 3050B
Lead	86.5		0.493	mg/kg	EPA 6010B	EPA 3050B
Nickel	12.8		0.246	mg/kg	EPA 6010B	EPA 3050B
Vanadium	32.2		0.246	mg/kg	EPA 6010B	EPA 3050B
Zinc	153		0.985	mg/kg	EPA 6010B	EPA 3050B
Mercury	0.236		0.0833	mg/kg	EPA 7471A	EPA 7471A Total
#1345 (14-08-0774-8)						
Aroclor-1248	58000		5000	ug/kg	EPA 8082	EPA 3540C
Aroclor-1260	3400		500	ug/kg	EPA 8082	EPA 3540C
#1346 (14-08-0774-9)				0 0		
Aroclor-1248	8800		500	ug/kg	EPA 8082	EPA 3540C
Aroclor-1260	670		50	ug/kg	EPA 8082	EPA 3540C

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

08/11/14 14-08-0774 EPA 3050B

EPA 6010B mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1332-5	14-08-0774-1-A	08/11/14 08:10	Solid	ICP 7300	08/11/14	08/13/14 12:30	140811L12
Parameter		Result	E	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	C	0.750	1.00		
Arsenic		1.62	C	0.750	1.00		
Barium		74.6	C	0.500	1.00		
Beryllium		0.251	C	0.250	1.00		
Cadmium		ND	C	0.500	1.00		
Chromium		16.1	C	0.250	1.00		
Cobalt		9.42	C	0.250	1.00		
Copper		16.2	C	0.500	1.00		
Lead		1.56	C	0.500	1.00		
Molybdenum		ND	C	0.250	1.00		
Nickel		14.0	C	0.250	1.00		
Selenium		ND	C	0.750	1.00		
Silver		ND	C	0.250	1.00		
Thallium		ND	C	0.750	1.00		
Vanadium		25.5	C	0.250	1.00		
Zinc		42.4	1	1.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

08/11/14 14-08-0774 EPA 3050B

EPA 6010B mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-010	14-08-0774-2-A	08/11/14 10:00	Solid	ICP 7300	08/11/14	08/13/14 12:31	140811L12
<u>Parameter</u>		Result	<u>F</u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		2.73	().743	0.990		
Arsenic		1.96	().743	0.990		
Barium		357	().495	0.990		
Beryllium		0.353	().248	0.990		
Cadmium		1.47	().495	0.990		
Chromium		19.1	().248	0.990		
Cobalt		11.6	().248	0.990		
Copper		73.8	().495	0.990		
Lead		151	().495	0.990		
Molybdenum		ND	().248	0.990		
Nickel		20.1	().248	0.990		
Selenium		ND	().743	0.990		
Silver		ND	().248	0.990		
Thallium		ND	().743	0.990		
Vanadium		32.5	().248	0.990		
Zinc		1350	(0.990	0.990		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

08/11/14 14-08-0774 EPA 3050B EPA 6010B

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-011	14-08-0774-3-A	08/11/14 10:02	Solid	ICP 7300	08/11/14	08/13/14 12:32	140811L12
Parameter		<u>Result</u>	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		ND	().750	1.00		
Arsenic		1.45	().750	1.00		
Barium		223	().500	1.00		
Beryllium		0.324	().250	1.00		
Cadmium		1.02	(0.500	1.00		
Chromium		18.8	(0.250	1.00		
Cobalt		11.7	(0.250	1.00		
Copper		56.0	(0.500	1.00		
Lead		124	(0.500	1.00		
Molybdenum		0.436	(0.250	1.00		
Nickel		15.1	(0.250	1.00		
Selenium		ND	(0.750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	(0.750	1.00		
Vanadium		30.5	(0.250	1.00		
Zinc		734	1	.00	1.00		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

08/11/14 14-08-0774 EPA 3050B

EPA 6010B mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 4 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-012	14-08-0774-4-A	08/11/14 10:04	Solid	ICP 7300	08/11/14	08/13/14 12:33	140811L12
Parameter		<u>Result</u>	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>lifiers</u>
Antimony		1.93	().739	0.985		
Arsenic		3.11	().739	0.985		
Barium		307	(0.493	0.985		
Beryllium		0.354	().246	0.985		
Cadmium		1.46	(0.493	0.985		
Chromium		23.0	().246	0.985		
Cobalt		12.9	().246	0.985		
Copper		91.7	(0.493	0.985		
Lead		199	(0.493	0.985		
Molybdenum		0.807	().246	0.985		
Nickel		20.7	(0.246	0.985		
Selenium		ND	().739	0.985		
Silver		ND	(0.246	0.985		
Thallium		ND	().739	0.985		
Vanadium		33.7	(0.246	0.985		
Zinc		1100	().985	0.985		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Zinc

Project: Former Pechiney Cast Plate Facility / 0106270030

Date Received: Work Order: Preparation: Method: 08/11/14 14-08-0774 EPA 3050B EPA 6010B

Units:

s: mg/kg Page 5 of 8

0.985

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-013	14-08-0774-5-A	08/11/14 10:05	Solid	ICP 7300	08/11/14	08/13/14 12:34	140811L12
Parameter		Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	alifiers
Antimony		ND	().739	0.985		
Arsenic		ND	().739	0.985		
Barium		178	(0.493	0.985		
Beryllium		0.360	().246	0.985		
Cadmium		ND	(0.493	0.985		
Chromium		17.2	().246	0.985		
Cobalt		12.0	().246	0.985		
Copper		40.2	(0.493	0.985		
Lead		61.3	(0.493	0.985		
Molybdenum		ND	().246	0.985		
Nickel		14.1	(0.246	0.985		
Selenium		ND	().739	0.985		
Silver		ND	().246	0.985		
Thallium		ND	().739	0.985		
Vanadium		33.9	(0.246	0.985		

0.985

338

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

08/11/14 14-08-0774 EPA 3050B

EPA 6010B mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 6 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-014	14-08-0774-6-A	08/11/14 10:06	Solid	ICP 7300	08/11/14	08/13/14 12:35	140811L12
Parameter		Result	<u> </u>	<u> </u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().735	0.980		
Arsenic		ND	().735	0.980		
Barium		185	(0.490	0.980		
Beryllium		0.312	(0.245	0.980		
Cadmium		ND	(0.490	0.980		
Chromium		15.0	(0.245	0.980		
Cobalt		10.1	(0.245	0.980		
Copper		40.0	(0.490	0.980		
Lead		64.5	(0.490	0.980		
Molybdenum		ND	().245	0.980		
Nickel		12.3	().245	0.980		
Selenium		ND	().735	0.980		
Silver		ND	().245	0.980		
Thallium		ND	().735	0.980		
Vanadium		29.0	(0.245	0.980		
Zinc		403	(0.980	0.980		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 08/11/14 14-08-0774 EPA 3050B

Units:

EPA 6010B mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 7 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-015	14-08-0774-7-A	08/11/14 10:07	Solid	ICP 7300	08/11/14	08/13/14 12:36	140811L12
<u>Parameter</u>		Result	<u> </u>	RL	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	(0.739	0.985		
Arsenic		1.07	(0.739	0.985		
Barium		150	(0.493	0.985		
Beryllium		0.336	(0.246	0.985		
Cadmium		ND	(0.493	0.985		
Chromium		15.2	(0.246	0.985		
Cobalt		10.9	(0.246	0.985		
Copper		27.5	(0.493	0.985		
Lead		86.5	(0.493	0.985		
Molybdenum		ND	(0.246	0.985		
Nickel		12.8	(0.246	0.985		
Selenium		ND	(0.739	0.985		
Silver		ND	(0.246	0.985		
Thallium		ND	(0.739	0.985		
Vanadium		32.2	(0.246	0.985		
Zinc		153	(0.985	0.985		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

08/11/14 14-08-0774 EPA 3050B EPA 6010B

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 8 of 8

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-18726	N/A	Solid	ICP 7300	08/11/14	08/11/14 20:19	140811L12
<u>Parameter</u>	·	Result	<u> </u>	<u>RL</u>	<u>DF</u>	Qua	<u>llifiers</u>
Antimony		ND	().750	1.00		
Arsenic		ND	().750	1.00		
Barium		ND	().500	1.00		
Beryllium		ND	().250	1.00		
Cadmium		ND	(0.500	1.00		
Chromium		ND	(0.250	1.00		
Cobalt		ND	(0.250	1.00		
Copper		ND	(0.500	1.00		
Lead		ND	(0.500	1.00		
Molybdenum		ND	(0.250	1.00		
Nickel		ND	(0.250	1.00		
Selenium		ND	(0.750	1.00		
Silver		ND	(0.250	1.00		
Thallium		ND	(0.750	1.00		
Vanadium		ND	(0.250	1.00		
Zinc		ND	1	.00	1.00		

AMEC Environment & Infrastructure

Date Received:

Work Order:

14-08-0774

Irvine, CA 92617-3094

Preparation:

Method:

EPA 7471A Total

Method:

mg/kg

Project: Former Pechiney Cast Plate Facility / 0106270030 Page 1 of 1

Project. Former Fechiney C	ast Flate Facility / 0100	270030				rage 1011		
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
#1332-5	14-08-0774-1-A	08/11/14 08:10	Solid	Mercury 05	08/12/14	08/12/14 18:16	140812L03	
Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers	
Mercury		ND		0.0833	1.00			
925-V-R/R-SS-010	14-08-0774-2-A	08/11/14 10:00	Solid	Mercury 05	08/12/14	08/12/14 18:23	140812L03	
Parameter Parameter		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	alifiers	
Mercury		0.162		0.0820	1.00			
925-V-R/R-SS-011	14-08-0774-3-A	08/11/14 10:02	Solid	Mercury 05	08/12/14	08/12/14 18:25	140812L03	
Parameter Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers	
Mercury		ND		0.0806	1.00			
925-V-R/R-SS-012	14-08-0774-4-A	08/11/14 10:04	Solid	Mercury 05	08/12/14	08/12/14 18:27	140812L03	
Parameter Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers	
Mercury		0.195		0.0806	1.00			
925-V-R/R-SS-013	14-08-0774-5-A	08/11/14 10:05	Solid	Mercury 05	08/12/14	08/12/14 18:30	140812L03	
Parameter Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers	
Mercury		ND		0.0806	1.00			
925-V-R/R-SS-014	14-08-0774-6-A	08/11/14 10:06	Solid	Mercury 05	08/12/14	08/12/14 18:32	140812L03	
Parameter Parameter		Result	-	RL	<u>DF</u>	Qua	alifiers	
Mercury		0.957		0.0833	1.00			
925-V-R/R-SS-015	14-08-0774-7-A	08/11/14 10:07	Solid	Mercury 05	08/12/14	08/12/14 18:10	140812L03	
<u>Parameter</u>		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers	
Mercury		0.236		0.0833	1.00			
Method Blank	099-16-272-470	N/A	Solid	Mercury 05	08/12/14	08/12/14 18:05	140812L03	
Parameter Parameter		Result		<u>RL</u>	<u>DF</u>	Qua	alifiers	
Mercury		ND		0.0833	1.00			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

08/11/14 14-08-0774 EPA 3540C EPA 8082 ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1332-5	14-08-0774-1-A	08/11/14 08:10	Solid	GC 31	08/11/14	08/12/14 20:22	140811L16
Parameter		Result	RL		<u>DF</u>	Qua	<u>llifiers</u>
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		64	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
<u>Surrogate</u>		Rec. (%)	Co	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		119	60-	-125			
2,4,5,6-Tetrachloro-m-Xylene		127	50-	-130			

925-V-R/R-SS-010	14-08-0774-2-A	08/11/14 10:00	Solid GC 31	08/11/14	08/12/14 140811L16 20:41
Parameter		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qualifiers
Aroclor-1016		ND	51	1.00	
Aroclor-1221		ND	51	1.00	
Aroclor-1232		ND	51	1.00	
Aroclor-1242		ND	51	1.00	
Aroclor-1248		ND	51	1.00	
Aroclor-1254		ND	51	1.00	
Aroclor-1260		ND	51	1.00	
Aroclor-1262		ND	51	1.00	
Aroclor-1268		ND	51	1.00	
Surrogate		Rec. (%)	Control Limits	Qualifiers	
Decachlorobiphenyl		114	60-125		
2,4,5,6-Tetrachloro-m-Xylene		126	50-130		

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

08/11/14 14-08-0774 EPA 3540C EPA 8082

Project: Former Pechiney Cast Plate Facility / 0106270030

ug/kg Page 2 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-011	14-08-0774-3-A	08/11/14 10:02	Solid	GC 31	08/11/14	08/12/14 21:00	140811L16
Parameter		<u>Result</u>	<u>R</u>	<u>L</u>	<u>DF</u>	Qua	<u>alifiers</u>
Aroclor-1016		ND	50)	1.00		
Aroclor-1221		ND	50)	1.00		
Aroclor-1232		ND	50)	1.00		
Aroclor-1242		ND	50)	1.00		
Aroclor-1248		ND	50)	1.00		
Aroclor-1254		ND	50)	1.00		
Aroclor-1260		ND	50)	1.00		
Aroclor-1262		ND	50)	1.00		
Aroclor-1268		ND	50)	1.00		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	Qualifiers		
Decachlorobiphenyl		112	60)-125			
2,4,5,6-Tetrachloro-m-Xylene		129	50)-130			

925-V-R/R-SS-012	14-08-0774-4-A	08/11/14 10:04	Solid GC 31	08/11/14	08/12/14 21:19	140811L16
<u>Parameter</u>		Result	<u>RL</u>	DF	Qu	alifiers
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Lin	nits Qualifiers		
Decachlorobiphenyl		114	60-125			
2,4,5,6-Tetrachloro-m-Xylene		127	50-130			

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094

Date Received: Work Order: Preparation: Method:

Units:

08/11/14 14-08-0774 EPA 3540C EPA 8082

ug/kg

Page 3 of 6

Project: Former Pechiney Cast Plate Facility / 0106270030

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
925-V-R/R-SS-013	14-08-0774-5-A	08/11/14 10:05	Solid	GC 31	08/11/14	08/12/14 21:38	140811L16
<u>Parameter</u>		Result	RI	<u>L</u>	<u>DF</u>	Qua	<u>lifiers</u>
Aroclor-1016		ND	50)	1.00		
Aroclor-1221		ND	50)	1.00		
Aroclor-1232		ND	50)	1.00		
Aroclor-1242		ND	50)	1.00		
Aroclor-1248		ND	50)	1.00		
Aroclor-1254		ND	50)	1.00		
Aroclor-1260		ND	50)	1.00		
Aroclor-1262		ND	50)	1.00		
Aroclor-1268		ND	50)	1.00		
Surrogate		Rec. (%)	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		114	60)-125			
2,4,5,6-Tetrachloro-m-Xylene		127	50)-130			

925-V-R/R-SS-014	14-08-0774-6-A	08/11/14 10:06	Solid GC 3	1 08/11/14	08/12/14 21:57	140811L16
<u>Parameter</u>		Result	<u>RL</u>	DF	Qu	<u>ialifiers</u>
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1248		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		ND	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
<u>Surrogate</u>		Rec. (%)	Control Lir	mits Qualifiers		
Decachlorobiphenyl		112	60-125			
2,4,5,6-Tetrachloro-m-Xylene		127	50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 08/11/14 14-08-0774 EPA 3540C EPA 8082

Project: Former Pechiney Cast Plate Facility / 0106270030

Units: ug/kg
Page 4 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
925-V-R/R-SS-015	14-08-0774-7-A	08/11/14 10:07	Solid	GC 31	08/11/14	08/12/14 22:16	140811L16	
<u>Parameter</u>		Result	RL		<u>DF</u>	Qualifiers		
Aroclor-1016		ND	50		1.00			
Aroclor-1221		ND	50		1.00			
Aroclor-1232		ND	50		1.00			
Aroclor-1242		ND	50		1.00			
Aroclor-1248		ND	50		1.00			
Aroclor-1254		ND	50		1.00			
Aroclor-1260		ND	50		1.00			
Aroclor-1262		ND	50		1.00			
Aroclor-1268		ND	50		1.00			
Surrogate		Rec. (%)	<u>Cont</u>	trol Limits	Qualifiers			
Decachlorobiphenyl		113	60-12	25				
2,4,5,6-Tetrachloro-m-Xylene		126	50-13	30				

#1345	14-08-0774-8-A	08/11/14 14:00	Solid GC 31	08/11/14	08/13/14 140811L16 13:05
Parameter	·	Result	<u>RL</u>	DF	Qualifiers
Aroclor-1016		ND	500	10.0	
Aroclor-1221		ND	500	10.0	
Aroclor-1232		ND	500	10.0	
Aroclor-1242		ND	500	10.0	
Aroclor-1254		ND	500	10.0	
Aroclor-1260		3400	500	10.0	
Aroclor-1262		ND	500	10.0	
Aroclor-1268		ND	500	10.0	
Surrogate		Rec. (%)	Control Limit	ts Qualifiers	
Decachlorobiphenyl		125	60-125		
2,4,5,6-Tetrachloro-m-Xylene		119	50-130		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

Units:

14-08-0774 EPA 3540C EPA 8082

08/11/14

ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 5 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
#1345	14-08-0774-8-A	08/11/14 14:00	Solid	GC 31	08/11/14	08/13/14 13:43	140811L16
Parameter		Result	<u>RL</u>		DF	Qualifiers	
Aroclor-1248		58000	5000		100		
Surrogate		Rec. (%)	ec. (%) Contro		Qualifiers		
Decachlorobiphenyl		158		60-125	1,2,7		
2,4,5,6-Tetrachloro-m-Xylene		130		50-130			

#1346	14-08-0774-9-A	08/11/14 14:02	Solid GC 31	08/11/14	08/12/14 140811L1 22:54	16
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>	
Aroclor-1016		ND	50	1.00		
Aroclor-1221		ND	50	1.00		
Aroclor-1232		ND	50	1.00		
Aroclor-1242		ND	50	1.00		
Aroclor-1254		ND	50	1.00		
Aroclor-1260		670	50	1.00		
Aroclor-1262		ND	50	1.00		
Aroclor-1268		ND	50	1.00		
Surrogate		Rec. (%)	Control Limits	Qualifiers		
Decachlorobiphenyl		111	60-125			
2,4,5,6-Tetrachloro-m-Xylene		119	50-130			

#1346	14-08-0774-9-A	08/11/14 14:02	Solid	GC 31	08/11/14	08/13/14 13:24	140811L16
<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qualifiers	
Aroclor-1248		8800	500		10.0		
<u>Surrogate</u>		Rec. (%)		Control Limits	Qualifiers		
Decachlorobiphenyl		124		60-125			
2,4,5,6-Tetrachloro-m-Xylene		129		50-130			

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 08/11/14 14-08-0774 EPA 3540C EPA 8082

Units:

ug/kg

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 6 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-02-003-299	N/A	Solid	GC 31	08/11/14	08/12/14 19:25	140811L16
Parameter		Result	<u>RL</u>		DF	Qua	alifiers
Aroclor-1016		ND	50		1.00		
Aroclor-1221		ND	50		1.00		
Aroclor-1232		ND	50		1.00		
Aroclor-1242		ND	50		1.00		
Aroclor-1248		ND	50		1.00		
Aroclor-1254		ND	50		1.00		
Aroclor-1260		ND	50		1.00		
Aroclor-1262		ND	50		1.00		
Aroclor-1268		ND	50		1.00		
<u>Surrogate</u>		Rec. (%)	Co	ntrol Limits	<u>Qualifiers</u>		
Decachlorobiphenyl		103	60-	-125			
2,4,5,6-Tetrachloro-m-Xylene		107	50-	-130			

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method: 08/11/14 14-08-0774 EPA 3050B EPA 6010B

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 1 of 3

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
14-08-0785-1	Sample		Solid	ICP	7300	08/11/14	08/11/14	20:22	140811S12	
14-08-0785-1	Matrix Spike		Solid	ICP	7300	08/11/14	08/11/14	20:23	140811S12	
14-08-0785-1	Matrix Spike	Duplicate	Solid	ICP	7300	08/11/14	08/11/14	20:24	140811S12	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	ND	25.00	4.342	17	1.299	5	50-115	108	0-20	3,4
Arsenic	9.581	25.00	34.73	101	34.17	98	75-125	2	0-20	
Barium	166.2	25.00	199.0	4X	196.4	4X	75-125	4X	0-20	Q
Beryllium	0.4724	25.00	26.47	104	26.86	106	75-125	1	0-20	
Cadmium	ND	25.00	26.06	104	26.32	105	75-125	1	0-20	
Chromium	22.01	25.00	47.32	101	48.39	106	75-125	2	0-20	
Cobalt	11.63	25.00	38.17	106	38.42	107	75-125	1	0-20	
Copper	32.33	25.00	60.63	113	61.67	117	75-125	2	0-20	
Lead	33.56	25.00	67.24	135	60.08	106	75-125	11	0-20	3
Molybdenum	0.8366	25.00	22.93	88	23.15	89	75-125	1	0-20	
Nickel	21.78	25.00	46.94	101	47.38	102	75-125	1	0-20	
Selenium	ND	25.00	22.88	92	22.87	91	75-125	0	0-20	
Silver	ND	12.50	12.95	104	13.09	105	75-125	1	0-20	
Thallium	ND	25.00	21.80	87	22.15	89	75-125	2	0-20	
Vanadium	39.16	25.00	64.12	100	65.66	106	75-125	2	0-20	
Zinc	68.52	25.00	96.29	111	94.04	102	75-125	2	0-20	

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure

Date Received:

Work Order:

14-08-0774

Irvine, CA 92617-3094

Preparation:

Method:

Date Received:

08/11/14

Preparation:

EPA 7471A Total

Method:

EPA 7471A

Project: Former Pechiney Cast Plate Facility / 0106270030 Page 2 of 3

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
925-V-R/R-SS-015	Sample		Solid	Ме	rcury 05	08/12/14	08/12/14	18:10	140812S03	
925-V-R/R-SS-015	Matrix Spike		Solid	Me	rcury 05	08/12/14	08/12/14	18:12	140812S03	
925-V-R/R-SS-015	Matrix Spike I	Duplicate	Solid	Ме	rcury 05	08/12/14	08/12/14	18:14	140812S03	
Parameter	Sample Conc.	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	0.2361	0.8350	1.200	115	1.130	107	71-137	6	0-14	

Quality Control - Spike/Spike Duplicate

AMEC Environment & Infrastructure

Date Received:

Work Order:

14-08-0774

Irvine, CA 92617-3094

Preparation:

Method:

EPA 8082

Project: Former Pechiney Cast Plate Facility / 0106270030 Page 3 of 3

Quality Control Sample ID	Type		Matrix	Inst	trument	Date Prepared	Date Ana	yzed	MS/MSD Bat	tch Number
#1332-5	Sample		Solid	GC	31	08/11/14	08/12/14	20:22	140811S16	
#1332-5	Matrix Spike		Solid	GC	31	08/11/14	08/12/14	19:44	140811S16	
#1332-5	Matrix Spike	Duplicate	Solid	GC	31	08/11/14	08/12/14	20:03	140811S16	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Aroclor-1016	ND	100.0	111.1	111	114.9	115	50-135	3	0-25	
Aroclor-1260	ND	100.0	112.6	113	114.7	115	50-135	2	0-25	

Page 1 of 3

Quality Control - LCS

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: 08/11/14
Work Order: 14-08-0774
Preparation: EPA 3050B
Method: EPA 6010B

Project: Former Pechiney Cast Plate Facility / 0106270030

Quality Control Sample ID	Type	Matrix	Instrumen	t Date Prep	ared Date Ana	lyzed LCS Batch	Number
097-01-002-18726	LCS	Solid	ICP 7300	08/11/14	08/11/14	20:21 140811L1	2
<u>Parameter</u>		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	<u>Qualifiers</u>
Antimony		25.00	28.73	115	80-120	73-127	
Arsenic		25.00	26.68	107	80-120	73-127	
Barium		25.00	26.12	104	80-120	73-127	
Beryllium		25.00	26.14	105	80-120	73-127	
Cadmium		25.00	27.78	111	80-120	73-127	
Chromium		25.00	27.00	108	80-120	73-127	
Cobalt		25.00	29.57	118	80-120	73-127	
Copper		25.00	27.83	111	80-120	73-127	
Lead		25.00	27.56	110	80-120	73-127	
Molybdenum		25.00	27.24	109	80-120	73-127	
Nickel		25.00	28.28	113	80-120	73-127	
Selenium		25.00	25.13	101	80-120	73-127	
Silver		12.50	13.42	107	80-120	73-127	
Thallium		25.00	27.70	111	80-120	73-127	
Vanadium		25.00	26.15	105	80-120	73-127	
Zinc		25.00	27.48	110	80-120	73-127	

Total number of LCS compounds: 16
Total number of ME compounds: 0
Total number of ME compounds allowed: 1
LCS ME CL validation result: Pass

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-08-0774 EPA 7471A Total EPA 7471A

08/11/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 2 of 3

Quality Control Sample ID	Туре	Matrix	Instrument [Date Prepared	Date Analyzed	LCS Batch Number
099-16-272-470	LCS	Solid	Mercury 05 0	08/12/14	08/12/14 18:08	140812L03
<u>Parameter</u>		Spike Added	Conc. Recovered	ed LCS %Re	ec. %Rec	. CL Qualifiers
Mercury		0.8350	0.8845	106	85-12°	1

AMEC Environment & Infrastructure 121 Innovation Drive, Suite 200 Irvine, CA 92617-3094 Date Received: Work Order: Preparation: Method:

14-08-0774 EPA 3540C EPA 8082

08/11/14

Project: Former Pechiney Cast Plate Facility / 0106270030

Page 3 of 3

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepare	ed Date Analyzed	LCS Batch Number
099-02-003-299	LCS	Solid	GC 31	08/11/14	08/12/14 18:32	140811L16
<u>Parameter</u>		Spike Added	Conc. Recove	ered LCS %	<u>%Rec.</u> <u>%Rec</u>	. CL Qualifiers
Aroclor-1016		100.0	111.1	111	50-13	5
Aroclor-1260		100.0	107.9	108	60-13	0

Sample Analysis Summary Report

Work Order: 14-08-0774				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 6010B	EPA 3050B	469	ICP 7300	1
EPA 7471A	EPA 7471A Total	915	Mercury 05	1
EPA 8082	EPA 3540C	669	GC 31	1

Glossary of Terms and Qualifiers

Work Order: 14-08-0774 Page 1 of 1

Ouglifiers	Definition
Qualifiers *	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

SG The sample extract was subjected to Silica Gel treatment prior to analysis.

concentration by a factor of four or greater.

- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

	Cast Play		DATE: \$-11-14	NB 31505	LO_
910830 Cantan	LABORATORY ADDRESS:	CLIEN INFORMATION AMEC	KEPOKIING KEGUIKEMENIS:	14-08-07	
7					
COUNTER	LABORATORY PHONE NUMBER:		GEOTRACKER REQUIRED	YES	ON
(SIGNATURE):	al ANALY:	/SES	015 01 00 00 00 00 00 00 00 00 00 00 00 00		
Nominatey	PW CE 4808		Vater (W), or Other (C)	risiners	
SAMPLE	PPA THE	»́Е	CONTAINER SOIN (V), VARPOR (V), TYPE AND SIZE SOIN (SOIN (SO	Cooled Cooled Cooled	ADDITIONAL COMMENTS
41332-5	×	07	1		
925-2-4/R-55-010	× ×			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
925-81R-55-011	×		S	\ \ \	
925-2-RR-55-012	У У		<i>∽</i>	×	
925-2-R/A-55-013	× ×		9	>	
925-12-RUR-55-014	\ \ \ \		n	` Y	
925-IP-RR-55-015	×		~	7	
#13-JS			\$	X	
#13%	>		>	<u> </u>	
RELINQUISHED BY: DATE TIME	RECEIVED BY:	DATE TIME TOTAL NUMBER OF CONTAINERS	: CONTAINERS:	2	
All			NTS:	5	
10 /1/ 100 mar		1/1/ 120d			
	SIGNATURE: PRINTED NAME: COMPANY:	Tel 9	121 Innovation Drive, Suite 200 Irvine, California 92617-3094 49.642.0245 Fax 949.642.4474	ame	
motorini enem miremonimi enem en estatura de la mantenia estatura estatura de descena estatura en estatura est		usernessa kaannon minintenna melmondominina kerintenni eta kantaria kantaria kantaria kantaria kantaria kantari			

teturn to Contents

Calscience

SAMPLE RECEIPT FORM Cooler / of /

CLIENT: AMEC	DATE: _	08 /W /	14
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozer Temperature	Blank ay of sampl	☐ Sample	
Ambient Temperature: ☐ Air ☐ Filter		Checked by	: 678
CUSTODY SEALS INTACT: Cooler		Checked by:	
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	. Z		
COC document(s) received complete	7		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			. <u> </u>
Sampler's name indicated on COC			
Sample container label(s) consistent with COC	(
Sample container(s) intact and good condition	1 ~		
Proper containers and sufficient volume for analyses requested	*		
Analyses received within holding time	9		
Aqueous samples received within 15-minute holding time			
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfides ☐ Dissolved Oxygen			Z
Proper preservation noted on COC or sample container			7
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace			
Tedlar bag(s) free of condensation CONTAINER TYPE:			Ø
Solid: ☑4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores	s [®] □Terra	Cores [®] □	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB □	□1AGB na ₂ □	1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs	□1PB [□1PB na □5	00PB
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na₂ □			
Air: □Tedlar [®] □Canister Other: □ Trip Blank Lot#:	Labeled	Checked by:	87%
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Env		Reviewed by: _	600

9765 Eton Avenue Chatsworth California 91311 Tel: (818) 998-5547

Fax: (818) 998-7258

October 04, 2013

Linda Conlan AMEC Environment & Infrastructure, Inc. 121 Innovation Drive, Suite 200 Irvine, CA 92617

Re: Former Pechiney Cast Plate, Inc. / 0106270030

A844301 / 3J01004

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received on 10/01/13 15:15 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report or require additional information please call me at American Analytics.

Sincerely,

Viorel Vasile

Operations Manager

Client:AMEC Environment & Infrastructure, Inc.AA Project No: A844301Project No:0106270030Date Received: 10/01/13Project Name:Former Pechiney Cast Plate, Inc.Date Reported: 10/04/13

		zato Nopo			
Sample ID	Laboratory ID	Matrix	TAT	Date Sampled	Date Received
8082 PCBs					
45-V-R/R-SS-002	3J01004-01	Soil	2	10/01/13 09:00	10/01/13 15:15
45-V-R/R-SS-003	3J01004-02	Soil	2	10/01/13 09:00	10/01/13 15:15
45-V-R/R-SS-004	3J01004-03	Soil	2	10/01/13 09:05	10/01/13 15:15
45-V-R/R-SS-005	3J01004-04	Soil	2	10/01/13 09:10	10/01/13 15:15
45-V-R/R-SS-006	3J01004-05	Soil	2	10/01/13 09:15	10/01/13 15:15
45-V-R/R-SS-007	3J01004-06	Soil	2	10/01/13 09:30	10/01/13 15:15
45-V-R/R-SS-008	3J01004-07	Soil	2	10/01/13 09:35	10/01/13 15:15
45-V-R/R-SS-009	3J01004-08	Soil	2	10/01/13 09:40	10/01/13 15:15
45-V-R/R-SS-010	3J01004-09	Soil	2	10/01/13 09:45	10/01/13 15:15
45-V-R/R-SS-011	3J01004-10	Soil	2	10/01/13 09:50	10/01/13 15:15
83-V-R/R-SS-001	3J01004-11	Soil	2	10/01/13 10:00	10/01/13 15:15
83-V-R/R-SS-002	3J01004-12	Soil	2	10/01/13 10:05	10/01/13 15:15
CAM Metals Less Hg 6000/7000					
45-V-R/R-SS-002	3J01004-01	Soil	2	10/01/13 09:00	10/01/13 15:15
45-V-R/R-SS-003	3J01004-02	Soil	2	10/01/13 09:00	10/01/13 15:15
45-V-R/R-SS-004	3J01004-03	Soil	2	10/01/13 09:05	10/01/13 15:15
45-V-R/R-SS-005	3J01004-04	Soil	2	10/01/13 09:10	10/01/13 15:15
45-V-R/R-SS-006	3J01004-05	Soil	2	10/01/13 09:15	10/01/13 15:15

Client:AMEC Environment & Infrastructure, Inc.AA Project No: A844301Project No:0106270030Date Received: 10/01/13Project Name:Former Pechiney Cast Plate, Inc.Date Reported: 10/04/13

Sample ID	Laboratory ID	Matrix	TAT	Date Sampled	Date Received
45-V-R/R-SS-007	3J01004-06	Soil	2	10/01/13 09:30	10/01/13 15:15
45-V-R/R-SS-008	3J01004-07	Soil	2	10/01/13 09:35	10/01/13 15:15
45-V-R/R-SS-009	3J01004-08	Soil	2	10/01/13 09:40	10/01/13 15:15
45-V-R/R-SS-010	3J01004-09	Soil	2	10/01/13 09:45	10/01/13 15:15
45-V-R/R-SS-011	3J01004-10	Soil	2	10/01/13 09:50	10/01/13 15:15
83-V-R/R-SS-001	3J01004-11	Soil	2	10/01/13 10:00	10/01/13 15:15
83-V-R/R-SS-002	3J01004-12	Soil	2	10/01/13 10:05	10/01/13 15:15
Carbon Chain Characteriza	tion 8015M				
45-V-R/R-SS-002	3J01004-01	Soil	2	10/01/13 09:00	10/01/13 15:15
45-V-R/R-SS-003	3J01004-02	Soil	2	10/01/13 09:00	10/01/13 15:15
45-V-R/R-SS-004	3J01004-03	Soil	2	10/01/13 09:05	10/01/13 15:15
45-V-R/R-SS-005	3J01004-04	Soil	2	10/01/13 09:10	10/01/13 15:15
45-V-R/R-SS-006	3J01004-05	Soil	2	10/01/13 09:15	10/01/13 15:15
45-V-R/R-SS-007	3J01004-06	Soil	2	10/01/13 09:30	10/01/13 15:15
45-V-R/R-SS-008	3J01004-07	Soil	2	10/01/13 09:35	10/01/13 15:15
45-V-R/R-SS-009	3J01004-08	Soil	2	10/01/13 09:40	10/01/13 15:15
45-V-R/R-SS-010	3J01004-09	Soil	2	10/01/13 09:45	10/01/13 15:15
45-V-R/R-SS-011	3J01004-10	Soil	2	10/01/13 09:50	10/01/13 15:15
83-V-R/R-SS-001	3J01004-11	Soil	2	10/01/13 10:00	10/01/13 15:15
83-V-R/R-SS-002	3J01004-12	Soil	2	10/01/13 10:05	10/01/13 15:15

Client:AMEC Environment & Infrastructure, Inc.AA Project No: A844301Project No:0106270030Date Received: 10/01/13Project Name:Former Pechiney Cast Plate, Inc.Date Reported: 10/04/13

	<u> </u>				
Sample ID	Laboratory ID	Matrix	TAT	Date Sampled	Date Received
Mercury Total EPA 7470A/7471A					
45-V-R/R-SS-002	3J01004-01	Soil	2	10/01/13 09:00	10/01/13 15:15
45-V-R/R-SS-003	3J01004-02	Soil	2	10/01/13 09:00	10/01/13 15:15
45-V-R/R-SS-004	3J01004-03	Soil	2	10/01/13 09:05	10/01/13 15:15
45-V-R/R-SS-005	3J01004-04	Soil	2	10/01/13 09:10	10/01/13 15:15
45-V-R/R-SS-006	3J01004-05	Soil	2	10/01/13 09:15	10/01/13 15:15
45-V-R/R-SS-007	3J01004-06	Soil	2	10/01/13 09:30	10/01/13 15:15
45-V-R/R-SS-008	3J01004-07	Soil	2	10/01/13 09:35	10/01/13 15:15
45-V-R/R-SS-009	3J01004-08	Soil	2	10/01/13 09:40	10/01/13 15:15
45-V-R/R-SS-010	3J01004-09	Soil	2	10/01/13 09:45	10/01/13 15:15
45-V-R/R-SS-011	3J01004-10	Soil	2	10/01/13 09:50	10/01/13 15:15
83-V-R/R-SS-001	3J01004-11	Soil	2	10/01/13 10:00	10/01/13 15:15
83-V-R/R-SS-002	3J01004-12	Soil	2	10/01/13 10:05	10/01/13 15:15

Client:AMEC Environment & Infrastructure, Inc.AA Project No: A844301Project No:0106270030Date Received: 10/01/13Project Name:Former Pechiney Cast Plate, Inc.Date Reported: 10/04/13Method:Polychlorinated Biphenyls by GCUnits: ug/kg

Date Sampled: 10/01/13 10/01/13 10/01/13 10/01/13 **Date Prepared:** 10/02/13 10/02/13 10/02/13 10/02/13 **Date Analyzed:** 10/03/13 10/03/13 10/03/13 10/03/13 AA ID No: 3J01004-01 3J01004-02 3J01004-03 3J01004-04 **Client ID No:** 45-V-R/R-SS-002 45-V-R/R-SS-003 45-V-R/R-SS-004 45-V-R/R-SS-005

Matrix:	Soil	Soil	Soil	Soil	
Dilution Factor:	1	1	1	1	MRL
8082 PCBs (EPA 8082)					
Aroclor-1016	<20	<20	<20	<20	20
Aroclor-1221	<20	<20	<20	<20	20
Aroclor-1232	<20	<20	<20	<20	20
Aroclor-1242	<20	<20	<20	<20	20
Aroclor-1248	<20	<20	<20	<20	20
Aroclor-1254	<20	<20	<20	<20	20
Aroclor-1260	<20	<20	<20	<20	20
Aroclor-1268	<20	<20	<20	<20	20

<u>Surrogates</u>					%REC Limits
Decachlorobiphenyl	101%	119%	122%	128%	50-150
Tetrachloro-meta-xylene	72%	87%	87%	93%	50-150

A

Client: AMEC Environment & Infrastructure, Inc. AA Project No: A844301 Date Received: 10/01/13 Project No: 0106270030 **Project Name:** Former Pechiney Cast Plate, Inc. Date Reported: 10/04/13

Method:	Polychlorinated	d Biphenyls by 0	GC .		Uni	i ts: ug/kg
Date Sampled:		10/01/13	10/01/13	10/01/13	10/01/13	
Date Prepared:		10/02/13	10/02/13	10/02/13	10/02/13	
Date Analyzed:		10/03/13	10/03/13	10/03/13	10/03/13	
AA ID No:		3J01004-05	3J01004-06	3J01004-07	3J01004-08	
Client ID No:		45-V-R/R-SS-006	6 45-V-R/R-SS-007	7 45-V-R/R-SS-008	3 45-V-R/R-SS-009	
Matrix:		Soil	Soil	Soil	Soil	
Dilution Factor:		1	1	1	1	MRL
8082 PCBs (EPA	8082)					
Aroclor-1016		<20	<20	<20	<20	20
Aroclor-1221		<20	<20	<20	<20	20
Aroclor-1232		<20	<20	<20	<20	20
Aroclor-1242		<20	<20	<20	<20	20
Aroclor-1248		<20	<20	<20	<20	20
Aroclor-1254		<20	<20	<20	<20	20
Aroclor-1260		<20	<20	<20	<20	20
Aroclor-1268		<20	<20	<20	<20	20
<u>Surrogates</u>						%REC Limits
Decachlorobipher	nyl	133%	111%	114%	125%	50-150
Tetrachloro-meta	-xylene	89%	75%	89%	85%	50-150

AA Project No: A844301 Client: AMEC Environment & Infrastructure, Inc. 0106270030 Date Received: 10/01/13 **Project No:** Project Name: Former Pechiney Cast Plate, Inc. Date Reported: 10/04/13 Mothod: Polychlorinated Riphenyls by GC

Units: ua/ka

Method:	Polychlorinate	d Biphenyls by G	SC		Units	s: ug/kg
Date Sampled:		10/01/13	10/01/13	10/01/13	10/01/13	
Date Prepared:		10/02/13	10/02/13	10/02/13	10/02/13	
Date Analyzed:		10/03/13	10/03/13	10/03/13	10/03/13	
AA ID No:		3J01004-09	3J01004-10	3J01004-11	3J01004-12	
Client ID No:		45-V-R/R-SS-010	45-V-R/R-SS-011	83-V-R/R-SS-001	83-V-R/R-SS-002	
Matrix:		Soil	Soil	Soil	Soil	
Dilution Factor:		1	1	1	1	MRL
8082 PCBs (EPA	A 8082 <u>)</u>					
Aroclor-1016		<20	<20	<20	<20	20
Aroclor-1221		<20	<20	<20	<20	20
Aroclor-1232		<20	<20	<20	<20	20
Aroclor-1242		<20	<20	<20	<20	20
Aroclor-1248		<20	<20	<20	<20	20
Aroclor-1254		<20	<20	<20	<20	20
Aroclor-1260		<20	<20	<20	<20	20
Aroclor-1268		<20	<20	<20	<20	20
<u>Surrogates</u>						%REC Limits
Decachlorobiphe	enyl	119%	104%	138%	115%	50-150
Tetrachloro-meta	a-xylene	80%	134%	134%	89%	50-150

Client:AMEC Environment & Infrastructure, Inc.AA Project No: A844301Project No:0106270030Date Received: 10/01/13Project Name:Former Pechiney Cast Plate, Inc.Date Reported: 10/04/13Method:Carbon Chain by GC/FIDUnits: mg/kg

Date Sampled: 10/01/13 10/01/13 10/01/13 10/01/13 **Date Prepared:** 10/02/13 10/02/13 10/02/13 10/02/13 **Date Analyzed:** 10/03/13 10/03/13 10/03/13 10/03/13 AA ID No: 3J01004-01 3J01004-02 3J01004-03 3J01004-04 **Client ID No:** 45-V-R/R-SS-002 45-V-R/R-SS-003 45-V-R/R-SS-004 45-V-R/R-SS-005 Matrix: Soil Soil Soil Soil **Dilution Factor:** 1 1 1 1 MRL Carbon Chain Characterization 8015M (EPA 8015M) C6-C8 <1.0 <1.0 <1.0 <1.0 1.0 C8-C10 <1.0 <1.0 <1.0 <1.0 1.0 C10-C12 <1.0 <1.0 <1.0 1.0 < 1.0 C12-C14 <1.0 <1.0 <1.0 <1.0 1.0 <1.0 C14-C16 <1.0 <1.0 <1.0 1.0 C16-C18 <1.0 <1.0 <1.0 <1.0 1.0 C18-C20 <1.0 <1.0 1.0 <1.0 <1.0 C20-C22 <1.0 <1.0 <1.0 <1.0 1.0 C22-C24 <1.0 <1.0 <1.0 <1.0 1.0 C24-C26 <1.0 <1.0 <1.0 <1.0 1.0 C26-C28 <1.0 < 1.0 <1.0 <1.0 1.0 C28-C32 <1.0 <1.0 <1.0 <1.0 1.0 C32-C34 <1.0 <1.0 <1.0 <1.0 1.0 C34-C36 <1.0 <1.0 <1.0 <1.0 1.0 C36-C40 <1.0 <1.0 <1.0 <1.0 1.0 C40-C44 <1.0 <1.0 <1.0 <1.0 1.0 TPH (C6-C44) <10 <10 <10 <10 10

 Surrogates
 %REC Limits

 o-Terphenyl
 88%
 89%
 91%
 87%
 50-150

A

Client: AMEC Environment & Infrastructure, Inc.

Project No: 0106270030

Project Name: Former Pechiney Cast Plate, Inc.

Method: Carbon Chain by GC/FID

AA Project No: A844301

Date Received: 10/01/13

Date Reported: 10/04/13

Units: mg/kg

wetnoa:	Carbon Chain by Go	J/FID			'	Jnits: mg/kg
Date Sampled:	1	0/01/13	10/01/13	10/01/13	10/01/13	_
Date Prepared:	: 1	0/02/13	10/02/13	10/02/13	10/02/13	
Date Analyzed:	: 1	0/03/13	10/03/13	10/03/13	10/03/13	
AA ID No:	3J(01004-05	3J01004-06	3J01004-07	3J01004-08	
Client ID No:	45-V-	R/R-SS-006	645-V-R/R-SS-007	45-V-R/R-SS-008	45-V-R/R-SS-009	
Matrix:		Soil	Soil	Soil	Soil	
Dilution Factor	:	1	1	1	1	MRL
Carbon Chain	Characterization 801	5M (EPA 8	<u>8015M)</u>			
C6-C8		<1.0	<1.0	<1.0	<1.0	1.0
C8-C10		<1.0	<1.0	<1.0	<1.0	1.0
C10-C12		<1.0	<1.0	<1.0	<1.0	1.0
C12-C14		<1.0	<1.0	<1.0	<1.0	1.0
C14-C16		<1.0	<1.0	<1.0	<1.0	1.0
C16-C18		<1.0	<1.0	<1.0	<1.0	1.0
C18-C20		<1.0	<1.0	<1.0	<1.0	1.0
C20-C22		<1.0	<1.0	<1.0	<1.0	1.0
C22-C24		<1.0	<1.0	<1.0	<1.0	1.0
C24-C26		<1.0	<1.0	<1.0	<1.0	1.0
C26-C28		<1.0	<1.0	<1.0	<1.0	1.0
C28-C32		<1.0	<1.0	<1.0	<1.0	1.0
C32-C34		<1.0	<1.0	<1.0	<1.0	1.0
C34-C36		<1.0	<1.0	<1.0	<1.0	1.0
C36-C40		<1.0	<1.0	<1.0	<1.0	1.0
C40-C44		<1.0	<1.0	<1.0	<1.0	1.0
TPH (C6-C44)		<10	<10	<10	<10	10
Surrogates						%REC Limits
o-Terphenyl		91%	89%	91%	90%	50-150

Client: AMEC Environment & Infrastructure, Inc.

Project No: 0106270030

Project Name: Former Pechiney Cast Plate, Inc.

Method: Carbon Chain by GC/FID

AA Project No: A844301

Date Received: 10/01/13

Date Reported: 10/04/13

Units: mg/kg

wetnoa:	Carbon Chain by GC/FID				Units: mg/kg
Date Sampled:	10/01/13	10/01/13	10/01/13	10/01/13	
Date Prepared:	10/02/13	10/02/13	10/02/13	10/02/13	
Date Analyzed:	10/03/13	10/03/13	10/03/13	10/03/13	
AA ID No:	3J01004-0	9 3J01004-10	3J01004-1	1 3J01004-12	
Client ID No:	45-V-R/R-SS-(010 45-V-R/R-SS-0	011 83-V-R/R-SS	-001 83-V-R/R-SS-00)2
Matrix:	Soil	Soil	Soil	Soil	
Dilution Factor	: 1	1	1	1	MRL
Carbon Chain	Characterization 8015M (EP	A 8015M)			
C6-C8	<1.0	<1.0	<1.0	<1.0	1.0
C8-C10	<1.0	<1.0	<1.0	<1.0	1.0
C10-C12	<1.0	<1.0	<1.0	<1.0	1.0
C12-C14	<1.0	<1.0	<1.0	<1.0	1.0
C14-C16	<1.0	<1.0	<1.0	<1.0	1.0
C16-C18	<1.0	<1.0	<1.0	<1.0	1.0
C18-C20	<1.0	<1.0	<1.0	<1.0	1.0
C20-C22	<1.0	<1.0	<1.0	<1.0	1.0
C22-C24	<1.0	<1.0	<1.0	<1.0	1.0
C24-C26	<1.0	<1.0	<1.0	<1.0	1.0
C26-C28	<1.0	<1.0	<1.0	<1.0	1.0
C28-C32	<1.0	<1.0	<1.0	<1.0	1.0
C32-C34	<1.0	<1.0	<1.0	<1.0	1.0
C34-C36	<1.0	<1.0	<1.0	<1.0	1.0
C36-C40	<1.0	<1.0	<1.0	<1.0	1.0
C40-C44	<1.0	<1.0	<1.0	<1.0	1.0
TPH (C6-C44)	<10	<10	<10	<10	10
Surrogates					%REC Limits
o-Terphenyl	86%	90%	89%	89%	50-150

Client:AMEC Environment & Infrastructure, Inc.AA Project No: A844301Project No:0106270030Date Received: 10/01/13Project Name:Former Pechiney Cast Plate, Inc.Date Reported: 10/04/13

Method: Total Metals CAM 17 Units: mg/kg

Date Sampled: 10/01/13 10/01/13 10/01/13 10/01/13 **Date Prepared:** 10/02/13 10/02/13 10/02/13 10/02/13 **Date Analyzed:** 10/02/13 10/02/13 10/02/13 10/02/13 AA ID No: 3J01004-01 3J01004-02 3J01004-03 3J01004-04 Client ID No: 45-V-R/R-SS-002 45-V-R/R-SS-003 45-V-R/R-SS-004 45-V-R/R-SS-005 Soil Soil Soil Soil Matrix: **Dilution Factor:** 1 1 1 1 MRL CAM Metals Less Hg 6000/7000 (EPA 6010B/7000)

Antimony	<10	<10	<10	<10	10
Arsenic	< 0.50	1.4	1.7	< 0.50	0.50
Barium	110	120	110	110	10
Beryllium	<1.0	<1.0	<1.0	<1.0	1.0
Cadmium	1.9	1.8	1.8	1.8	1.0
Chromium	14	14	14	14	3.0
Cobalt	8.7	8.9	8.5	8.7	3.0
Copper	17	16	18	34	3.0
Lead	<3.0	<3.0	<3.0	<3.0	3.0
Molybdenum	< 5.0	< 5.0	<5.0	<5.0	5.0
Nickel	11	11	9.9	10	3.0
Selenium	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Silver	<1.0	<1.0	<1.0	<1.0	1.0
Thallium	< 5.0	< 5.0	< 5.0	<5.0	5.0
Vanadium	39	40	38	40	10
Zinc	49	49	50	50	3.0

AA Project No: A844301 Client: AMEC Environment & Infrastructure, Inc. 0106270030 Date Received: 10/01/13 Project No: **Project Name:** Former Pechiney Cast Plate, Inc. Date Reported: 10/04/13

Method:	Total Metals CAM 17				Units: mg/kg	
Date Sampled:	10/01/13	10/01/13	10/01/13	10/01/13		
Date Prepared:	10/02/13	10/02/13	10/02/13	10/02/13		
Date Analyzed:	10/02/13	10/02/13	10/02/13	10/02/13		
AA ID No:	3J01004-05	3J01004-06	3J01004-07	3J01004-08		
Client ID No:	45-V-R/R-SS-00	6 45-V-R/R-SS-007	45-V-R/R-SS-008	345-V-R/R-SS-00	9	
Matrix:	Soil	Soil	Soil	Soil		
Dilution Factor:	1	1	1	1		MRL
CAM Metals Les	ss Hg 6000/7000 (EPA 6010B	<u>7000)</u>				
Antimony	<10	<10	<10	<10		10
Arsenic	2.8	1.8	1.6	1.3		0.50
Barium	110	120	110	120		10
Beryllium	<1.0	<1.0	<1.0	<1.0		1.0
Cadmium	1.9	2.1	1.9	2.0		1.0
Chromium	15	16	14	16		3.0
Cabalt	0.0	0.0	0.0	0.5		2.0

Caumum	1.3	4. I	1.3	2.0	1.0
Chromium	15	16	14	16	3.0
Cobalt	9.2	9.8	9.2	9.5	3.0
Copper	18	17	15	15	3.0
Lead	3.2	<3.0	<3.0	<3.0	3.0
Molybdenum	<5.0	<5.0	<5.0	<5.0	5.0
Nickel	11	12	11	12	3.0
Selenium	< 0.50	< 0.50	< 0.50	<0.50	0.50
Silver	<1.0	<1.0	<1.0	<1.0	1.0
Thallium	<5.0	<5.0	<5.0	<5.0	5.0
Vanadium	41	42	39	41	10
Zinc	54	54	52	61	3.0

Client:AMEC Environment & Infrastructure, Inc.AA Project No: A844301Project No:0106270030Date Received: 10/01/13Project Name:Former Pechiney Cast Plate, Inc.Date Reported: 10/04/13

Method: Total Metals CAM 17 Units: mg/kg

Method:	Total Metals CAM 17			Uni	ts: mg/kg
Date Sampled:	10/01/13	10/01/13	10/01/13	10/01/13	
Date Prepared:	10/02/13	10/02/13	10/02/13	10/02/13	
Date Analyzed:	10/02/13	10/02/13	10/02/13	10/02/13	
AA ID No:	3J01004-09	3J01004-10	3J01004-11	3J01004-12	
Client ID No:	45-V-R/R-SS-01	045-V-R/R-SS-011	83-V-R/R-SS-001	83-V-R/R-SS-002	
Matrix:	Soil	Soil	Soil	Soil	
Dilution Factor:	1	1	1	1	MRL
CAM Metals Les	ss Hg 6000/7000 (EPA 6010B	<u>/7000)</u>			_
Antimony	<10	<10	<10	<10	10
Arsenic	1.6	2.2	1.4	1.4	0.50
Barium	98	180	100	100	10
Beryllium	<1.0	<1.0	<1.0	<1.0	1.0
Cadmium	1.8	2.7	1.7	1.7	1.0

Barium	98	180	100	100	10
Beryllium	<1.0	<1.0	<1.0	<1.0	1.0
Cadmium	1.8	2.7	1.7	1.7	1.0
Chromium	13	23	13	13	3.0
Cobalt	8.2	15	8.5	8.3	3.0
Copper	13	27	14	15	3.0
Lead	<3.0	3.1	<3.0	<3.0	3.0
Molybdenum	<5.0	< 5.0	< 5.0	<5.0	5.0
Nickel	9.3	18	9.6	9.6	3.0
Selenium	< 0.50	< 0.50	< 0.50	< 0.50	0.50
Silver	<1.0	<1.0	<1.0	<1.0	1.0
Thallium	<5.0	< 5.0	<5.0	<5.0	5.0
Vanadium	37	51	35	36	10
Zinc	46	74	48	47	3.0

A

MRL

LABORATORY ANALYSIS RESULTS

Client:AMEC Environment & Infrastructure, Inc.AA Project No: A844301Project No:0106270030Date Received: 10/01/13Project Name:Former Pechiney Cast Plate, Inc.Date Reported: 10/04/13

Method: Total Metals CAM 17 Units: mg/kg

Date Sampled: 10/01/13 10/01/13 10/01/13 10/01/13 **Date Prepared:** 10/02/13 10/02/13 10/02/13 10/02/13 **Date Analyzed:** 10/02/13 10/02/13 10/02/13 10/02/13 AA ID No: 3J01004-01 3J01004-02 3J01004-03 3J01004-04 Client ID No: 45-V-R/R-SS-002 45-V-R/R-SS-003 45-V-R/R-SS-004 45-V-R/R-SS-005

Matrix:SoilSoilSoilDilution Factor:111

Mercury Total EPA 7470A/7471A (EPA 7471A)

Mercury **0.028 0.037 0.032 0.040** 0.020

Client:AMEC Environment & Infrastructure, Inc.AA Project No: A844301Project No:0106270030Date Received: 10/01/13Project Name:Former Pechiney Cast Plate, Inc.Date Reported: 10/04/13

Method: Total Metals CAM 17 Units: mg/kg

Date Sampled: 10/01/13 10/01/13 10/01/13 10/01/13 **Date Prepared:** 10/02/13 10/02/13 10/02/13 10/02/13 **Date Analyzed:** 10/02/13 10/02/13 10/02/13 10/02/13 AA ID No: 3J01004-05 3J01004-06 3J01004-07 3J01004-08 45-V-R/R-SS-006 45-V-R/R-SS-007 45-V-R/R-SS-008 45-V-R/R-SS-009 **Client ID No:**

Matrix: Soil Soil Soil Soil

Dilution Factor: 1 1 1 1 1 MRL

Mercury Total EPA 7470A/7471A (EPA 7471A)

Mercury **0.064 0.042 0.046 0.036** 0.020

Client:AMEC Environment & Infrastructure, Inc.AA Project No: A844301Project No:0106270030Date Received: 10/01/13Project Name:Former Pechiney Cast Plate, Inc.Date Reported: 10/04/13

Method: Total Metals CAM 17 Units: mg/kg

Date Sampled: 10/01/13 10/01/13 10/01/13 10/01/13 **Date Prepared:** 10/02/13 10/02/13 10/02/13 10/02/13 **Date Analyzed:** 10/02/13 10/02/13 10/02/13 10/02/13 AA ID No: 3J01004-09 3J01004-10 3J01004-11 3J01004-12 45-V-R/R-SS-010 45-V-R/R-SS-011 83-V-R/R-SS-001 83-V-R/R-SS-002 **Client ID No:**

Matrix:SoilSoilSoilDilution Factor:1111MRL

Mercury Total EPA 7470A/7471A (EPA 7471A)

Mercury **0.032 0.048 0.026 0.040** 0.020

Client:AMEC Environment & Infrastructure, Inc.AA Project No: A844301Project No:0106270030Date Received: 10/01/13Project Name:Former Pechiney Cast Plate, Inc.Date Reported: 10/04/13

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Polychlorinated Biphenyls by GC -										
Batch B3J0201 - EPA 3550B										
Blank (B3J0201-BLK1)				Prepare	ed: 10/02/	′13 Ana	alvzed: 10	0/03/13		
Aroclor-1016	<10	10	ug/kg	Tropare	Ja. 10/02/	10 7 1110	ary 200. 1	3/00/10		
Aroclor-1221	<10	10	ug/kg							
Aroclor-1232	<10	10	ug/kg							
Aroclor-1242	<10	10	ug/kg							
Aroclor-1248	<10	10	ug/kg							
Aroclor-1254	<10	10	ug/kg							
Aroclor-1260	<10	10	ug/kg							
Aroclor-1268	<10	10	ug/kg							
Surrogate: Decachlorobiphenyl	3.02		ug/kg	2.5		121	50-150			
Surrogate: Tetrachloro-meta-xylene			ug/kg	2.5		95.3	50-150			
LCS (B3J0201-BS1)	,		ug/ng		ed: 10/02/			0/03/13		
Aroclor-1016	22.8	10	ug/kg	25		91.0	60-140	., ,	40	
Aroclor-1260	22.1	10	ug/kg	25		88.4	60-140		40	
Surrogate: Decachlorobiphenyl	2.85		ug/kg	2.5		114	50-150			
Surrogate: Tetrachloro-meta-xylene			ug/kg	2.5		93.6	50-150			
LCS Dup (B3J0201-BSD1)			9/9		ed: 10/02/			0/03/13		
Aroclor-1016	24.8	10	ug/kg	25		99.2	60-140	8.62	40	
Aroclor-1260	25.4	10	ug/kg	25		102	60-140	13.9	40	
Surrogate: Decachlorobiphenyl	3.14		ug/kg	2.5		126	50-150			
Surrogate: Tetrachloro-meta-xylene	2.46		ug/kg	2.5		98.4	50-150			
Matrix Spike (B3J0201-MS1)		Source: 3J0		Prepare	ed: 10/02/	′13 Ana	alyzed: 10	0/03/13		
Aroclor-1016	48.4	20	ug/kg	50	<20	96.8	50-150		40	
Aroclor-1260	49.0	20	ug/kg	50	<20	98.0	50-150		40	
Surrogate: Decachlorobiphenyl	6.28		ug/kg	5.0		126	50-150			
Surrogate: Tetrachloro-meta-xylene	4.29		ug/kg	5.0		85.8	50-150			
Matrix Spike Dup (B3J0201-MSD1		Source: 3J0		Prepare	ed: 10/02/	'13 Ana	alyzed: 10	0/03/13		
Aroclor-1016	48.5	20	ug/kg	50	<20	97.0	50-150	0.206	40	
Aroclor-1260	50.6	20	ug/kg	50	<20	101	50-150	3.21	40	
Surrogate: Decachlorobiphenyl	5.90		ug/kg	5.0		118	50-150			

Client:AMEC Environment & Infrastructure, Inc.AA Project No: A844301Project No:0106270030Date Received: 10/01/13Project Name:Former Pechiney Cast Plate, Inc.Date Reported: 10/04/13

Analyte I	Result	Reporting Limit	Units		Source Result %	%REC	%REC Limits	RPD	RPD Limit	Notes
Polychlorinated Biphenyls by GC - 0										
Batch B3J0201 - EPA 3550B		, - 								
Matrix Spike Dup (B3J0201-MSD1)	١ :	Source: 3J0	1004-06	Prepare	.d· 10/02/1	3 Ana	alvzed: 10	0/03/13		
Continued	'		100- 00	. roparc	JG. 10/02/1		, 200. T	0,00,10		
Surrogate: Tetrachloro-meta-xylene	4.17	1	ug/kg	5.0		83.3	50-150			
Carbon Chain by GC/FID - Quality C	ontrol									
Batch B3J0209 - EPA 3550B										
Blank (B3J0209-BLK1)				Prepare	ed & Analy	zed: 10	0/02/13			
C6-C8	<1.0	1.0	mg/kg							
C8-C10	<1.0		mg/kg							
C10-C12	<1.0		mg/kg							
C12-C14	<1.0		mg/kg							
C14-C16	<1.0	1.0	mg/kg							
C16-C18	<1.0	1.0	mg/kg							
C18-C20	<1.0	1.0	mg/kg							
C20-C22	<1.0	1.0	mg/kg							
C22-C24	<1.0	1.0	mg/kg							
C24-C26	<1.0	1.0	mg/kg							
C26-C28	<1.0		mg/kg							
C28-C32	<1.0		mg/kg							
C32-C34	<1.0	1.0	mg/kg							
C34-C36	<1.0		mg/kg							
C36-C40	<1.0		mg/kg							
C40-C44	<1.0		mg/kg							
TPH (C6-C44)	<10	10	mg/kg							
Surrogate: o-Terphenyl	8.71		mg/kg	10		87.1	50-150			
LCS (B3J0209-BS1)				Prepare	ed & Analy	zed: 10	0/02/13			
Diesel Range Organics as Diesel	200	10	mg/kg	200	<u>-</u>	100	75-125		40	
Surrogate: o-Terphenyl	12.3		mg/kg	10		123	50-150			
LCS Dup (B3J0209-BSD1)			3 3	Prepare	ed & Analy	zed: 10	0/02/13			
Diesel Range Organics as Diesel	200	10	mg/kg	200		99.9	75-125	0.379	40	
Surrogate: o-Terphenyl	12.6		mg/kg	10		126	50-150			
Matrix Spike (B3J0209-MS1)		Source: 3J0			ed & Analy					

Client:AMEC Environment & Infrastructure, Inc.AA Project No: A844301Project No:0106270030Date Received: 10/01/13Project Name:Former Pechiney Cast Plate, Inc.Date Reported: 10/04/13

Analyte	Result	Reporting Limit	Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Carbon Chain by GC/FID - Quality	Control									
Batch B3J0209 - EPA 3550B										
Matrix Spike (B3J0209-MS1) Con	tinued	Source: 3J0	1004-01	Prepare	ed & Analy	/zed: 1	0/02/13			
Diesel Range Organics as Diesel	196	10	mg/kg	200		97.8	70-130		40	
Surrogate: o-Terphenyl	12.3		mg/kg	10		123	50-150			
Matrix Spike Dup (B3J0209-MSD	1)	Source: 3J0	0 0	Prepare	ed & Analy	/zed: 1	0/02/13			
Diesel Range Organics as Diesel	196	10	mg/kg	200	<u> </u>	98.1	70-130	0.336	40	
Surrogate: o-Terphenyl	12.3		mg/kg	10		123	50-150			
Total Metals CAM 17 - Quality Con	trol									
Batch B3J0210 - EPA 3050B										
Blank (B3J0210-BLK1)				Prepare	ed & Analy	/zed: 1	0/02/13			
Antimony	<10	10	mg/kg							
Arsenic	< 0.50	0.50	mg/kg							
Barium	<10	10	mg/kg							
Beryllium	<1.0	1.0	mg/kg							
Cadmium	<1.0	1.0	mg/kg							
Chromium	<3.0	3.0	mg/kg							
Cobalt	<3.0	3.0	mg/kg							
Copper	<3.0	3.0	mg/kg							
Lead	<3.0	3.0	mg/kg							
Molybdenum	<5.0	5.0	mg/kg							
Nickel	<3.0	3.0	mg/kg							
Selenium	< 0.50		mg/kg							
Silver	<1.0	1.0	mg/kg							
Thallium	<5.0	5.0	mg/kg							
Vanadium	<10	10	mg/kg							
Zinc	<3.0	3.0	mg/kg							
LCS (B3J0210-BS1)				Prepare	ed & Analy	/zed: 1	0/02/13			
Antimony	46.7	10	mg/kg	50		93.5	80-120			
Arsenic	53.4		mg/kg	50		107	80-120			
Barium	49.6	10	mg/kg	50		99.1	80-120			
Beryllium	49.9	1.0	mg/kg	50		99.8	80-120			
Cadmium	51.5	1.0	mg/kg	50		103	80-120			

Client:AMEC Environment & Infrastructure, Inc.AA Project No: A844301Project No:0106270030Date Received: 10/01/13Project Name:Former Pechiney Cast Plate, Inc.Date Reported: 10/04/13

Analyte	l Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
Гotal Metals CAM 17 - Quality Cor	ntrol								
Batch B3J0210 - EPA 3050B									
LCS (B3J0210-BS1) Continued				Prepare	ed & Analyzed: 1	0/02/13			
Chromium	50.6	3.0	mg/kg	50	101	80-120			
Cobalt	51.8	3.0	mg/kg	50	104	80-120			
Copper	49.9	3.0	mg/kg	50	99.7	80-120			
Lead	51.8	3.0	mg/kg	50	104	80-120			
Molybdenum	50.6	5.0	mg/kg	50	101	80-120			
Nickel	51.4	3.0	mg/kg	50	103	80-120			
Selenium	51.2	0.50	mg/kg	50	102	80-120			
Silver	49.6	1.0	mg/kg	50	99.2	80-120			
Thallium	42.2	5.0	mg/kg	50	84.5	80-120			
Vanadium	50.0	10	mg/kg	50	100	80-120			
Zinc	52.4	3.0	mg/kg	50	105	80-120			
LCS Dup (B3J0210-BSD1)			0 0	Prepare	ed & Analyzed: 1	0/02/13			
Antimony	47.3	10	mg/kg	50	94.5	80-120	1.09	20	
Arsenic	53.0	0.50	mg/kg	50	106	80-120		20	
Barium	49.7	10	mg/kg	50	99.4	80-120	0.252	20	
Beryllium	49.7	1.0	mg/kg	50	99.3	80-120	0.462	20	
Cadmium	52.0	1.0	mg/kg	50	104	80-120		20	
Chromium	50.8	3.0	mg/kg	50	102	80-120	0.592	20	
Cobalt	52.6	3.0	mg/kg	50	105	80-120	1.44	20	
Copper	49.7	3.0	mg/kg	50	99.3	80-120	0.392	20	
Lead	52.2	3.0	mg/kg	50	104	80-120	0.673	20	
Molybdenum	51.6	5.0	mg/kg	50	103	80-120	2.06	20	
Nickel	52.4	3.0	mg/kg	50	105	80-120	1.73	20	
Selenium	52.7	0.50	mg/kg	50	105	80-120	2.99	20	
Silver	49.2	1.0	mg/kg	50	98.3	80-120	0.911	20	
Thallium	45.0	5.0	mg/kg	50	90.1	80-120	6.37	20	
Vanadium	50.2	10	mg/kg	50	100	80-120	0.299	20	
Zinc	53.4	3.0	mg/kg	50	107	80-120	1.89	20	
Duplicate (B3J0210-DUP1)	S	ource: 3J0		Prepare	ed & Analyzed: 1	0/02/13			
Antimony	<10	10	mg/kg		<10			40	
Arsenic	1.49	0.50	mg/kg		1.38		7.30	40	

A

Client:AMEC Environment & Infrastructure, Inc.AA Project No: A844301Project No:0106270030Date Received: 10/01/13Project Name:Former Pechiney Cast Plate, Inc.Date Reported: 10/04/13

Analyte	l Result	Reporting Limit	Units		Source Result	%RFC	%REC	RPD	RPD Limit	Notes
		LIIIII	Onito	LCVCI	Nosuit	70IVLO	Liiiit3	IXI D	Lilling	110103
Total Metals CAM 17 - Quality Con	itrol									
Batch B3J0210 - EPA 3050B										
Duplicate (B3J0210-DUP1) Conti			1004-12	Prepare		yzed: 1	0/02/13			
Barium	104	10	mg/kg		101			2.58	40	
Beryllium	<1.0	1.0	mg/kg		<1.0				40	
Cadmium	1.73	1.0	mg/kg		1.70			1.75	40	
Chromium	13.6	3.0	mg/kg		13.4			2.04	40	
Cobalt	8.80	3.0	mg/kg		8.32			5.72	40	
Copper	15.1	3.0	mg/kg		14.7			2.75	40	
Lead	<3.0	3.0	mg/kg		<3.0				40	
Molybdenum	<5.0	5.0	mg/kg		<5.0				40	
Nickel	10.2	3.0	mg/kg		9.65			5.93	40	
Selenium	<0.50	0.50	mg/kg		< 0.50				40	
Silver	<1.0	1.0	mg/kg		<1.0				40	
Thallium	<5.0	5.0	mg/kg		<5.0				40	
Vanadium	35.8	10	mg/kg		35.7			0.266	40	
Zinc	52.6	3.0	mg/kg		46.7			11.8	40	
Matrix Spike (B3J0210-MS1)	S	ource: 3J0	1004-05	Prepare			0/02/13			
Antimony	42.0	10	mg/kg	50	<10	84.0	75-125			_
Arsenic	54.0	0.50	mg/kg	50	2.84	102	75-125			
Barium	160	10	mg/kg	50	114	90.4	75-125			
Beryllium	46.3	1.0	mg/kg	50	<1.0	92.6	75-125			
Cadmium	50.8	1.0	mg/kg	50	1.90	97.8	75-125			
Chromium	65.2	3.0	mg/kg	50	15.4	99.5	75-125			
Cobalt	59.7	3.0	mg/kg	50	9.16	101	75-125			
Copper	65.5	3.0	mg/kg	50	17.8		75-125			
Lead	53.4	3.0	mg/kg	50	3.21	100	75-125			
Molybdenum	49.5	5.0	mg/kg	50	<5.0		75-125			
Nickel	60.8	3.0	mg/kg	50	10.9		75-125			
Selenium	44.6	0.50	mg/kg	50	< 0.50		75-125			
Silver	47.9	1.0	mg/kg	50	<1.0		75-125			
Thallium	14.5	5.0	mg/kg	50	<5.0		60-140			QM-07
Vanadium	88.9	10	mg/kg	50	41.0		75-125			
Zinc	105	3.0	mg/kg	50	53.7	103	75-125			

A

Client:AMEC Environment & Infrastructure, Inc.AA Project No: A844301Project No:0106270030Date Received: 10/01/13Project Name:Former Pechiney Cast Plate, Inc.Date Reported: 10/04/13

Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
itrol									
)1) S	Source: 3J0	1004-05	Prepare	ed & Anal	yzed: 1	0/02/13			
44.3	10		50			75-125	5.32	40	
56.6	0.50		50	2.84	107	75-125	4.61	40	
160	10		50	114	92.2	75-125	0.562	40	
48.6	1.0		50	<1.0	97.2	75-125	4.85	40	
53.2	1.0	mg/kg	50	1.90	103	75-125	4.71	40	
67.0	3.0	mg/kg	50	15.4	103	75-125	2.87	40	
62.2	3.0	mg/kg	50	9.16	106	75-125	4.10	40	
68.4	3.0	mg/kg	50	17.8	101	75-125	4.33	40	
56.4	3.0	mg/kg	50	3.21	106	75-125	5.37	40	
52.6	5.0	mg/kg	50	<5.0	105	75-125	6.09	40	
62.8	3.0	mg/kg	50	10.9	104	75-125	3.32	40	
46.7	0.50	mg/kg	50	< 0.50	93.4	75-125	4.62	40	
49.6	1.0	mg/kg	50	<1.0	99.2	75-125	3.45	40	
24.5	5.0	mg/kg	50	<5.0	49.0	60-140	51.0	40	QM-07
90.7	10	mg/kg	50	41.0	99.3	75-125	2.00	40	
108	3.0	mg/kg	50	53.7	108	75-125	2.39	40	
ntrol									
			Prepare	ed & Anal	yzed: 1	0/02/13			
<0.020	0.020	mg/kg			-				
		0 0	Prepare	ed & Anal	yzed: 1	0/02/13			
0.508	0.020	mg/kg	0.50		102	80-120			
		0 0	Prepare	ed & Anal	yzed: 1	0/02/13			
0.520	0.020	mg/kg	0.50		104	80-120	2.14	25	
5	Source: 3J0		Prepare	ed & Anal	yzed: 1	0/02/13			
0.0415	0.020		•	0.0400	-		3.68	25	
S	Source: 3J0		Prepare	ed & Anal	yzed: 1	0/02/13			
0.552	0.020		0.50						
)1) S	Source: 3J0		Prepare	ed & Anal	yzed: 1	0/02/13			
0.561	0.020		0.50		-	75-125	1.62	25	
	44.3 56.6 160 48.6 53.2 67.0 62.2 68.4 56.4 52.6 62.8 46.7 49.6 24.5 90.7 108 ontrol <0.020 0.508 0.520 0.552	Source: 3J0 44.3 10 56.6 0.50 160 10 48.6 1.0 53.2 1.0 67.0 3.0 62.2 3.0 68.4 3.0 56.4 3.0 52.6 5.0 62.8 3.0 46.7 0.50 49.6 1.0 24.5 5.0 90.7 10 108 3.0 3.0 3	Source: 3J01004-05	Source: 3J01004-05 Prepare	Source: 3J01004-05 Prepared & Anal 44.3 10 mg/kg 50 <10 56.6 0.50 mg/kg 50 2.84 160 10 mg/kg 50 <1.0 144.6 1.0 mg/kg 50 1.90 67.0 3.0 mg/kg 50 15.4 62.2 3.0 mg/kg 50 3.21 68.4 3.0 mg/kg 50 3.21 52.6 5.0 mg/kg 50 3.21 52.6 5.0 mg/kg 50 3.21 52.6 5.0 mg/kg 50 40.9 46.7 0.50 mg/kg 50 <5.0 49.6 1.0 mg/kg 50 <1.0 24.5 5.0 mg/kg 50 <5.0 90.7 10 mg/kg 50 <5.0 source: 3J01004-12 Prepared & Anal 0.508 0.020 mg/kg 0.50 Source: 3J01004-05 Prepared & Anal 0.552 0.020 mg/kg 0.50 0.0645 0.552 0.020 mg/kg 0.50 0.0645 0.552 0.020 mg/kg 0.50 Prepared & Anal 0.552 0.020 mg/kg 0.50 Prepared & Anal 0.552 0.020 mg/kg 0.50 0.0645 0.050 Prepared & Anal 0.552 0.020 mg/kg 0.50 0.0645 0.050 Prepared & Anal 0.552 0.020 mg/kg 0.50 Prepared & Anal 0.552 0.020 mg/kg 0.50 0.0645 0.050 Prepared & Anal 0.552 0.020 mg/kg 0.50 Prepared & Anal 0.552 0.020 mg/kg 0.50 0.0645 0.050 Prepared & Anal 0.552 0.020 mg/kg 0.50 0.0645 0.050 Prepared & Anal 0.552 0.020 mg/kg 0.50 0.0645 0.050 Prepared & Anal 0.552 0.020 mg/kg 0.50 0.0645 0.050 Prepared & Anal 0.552 0.020 mg/kg 0.50 0.0645 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	Source: 3J01004-05 Prepared & Analyzed: 10	Note	Source: 3J01004-05 Prepared & Analyzed: 10/02/13	Source: 3J01004-05 Prepared & Analyzed: 10/02/13

A

Client:AMEC Environment & Infrastructure, Inc.AA Project No: A844301Project No:0106270030Date Received: 10/01/13Project Name:Former Pechiney Cast Plate, Inc.Date Reported: 10/04/13

Special Notes

[1] = QM-07 : The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was

accepted based on acceptable LCS recovery.

HEJEY		1 1		DATE: /6/01/13	PAGE	OF]
22901	ANRIGITAS	CLIENT INFORMATION: AMEL		- 4 − 1		\ \ \ \
J-1-1-1-1-6		IRUTUR			,	
SAMPLE SHIPMENT NETHOD: LTVC.	CONTACT					
COURTEAL LABORATOR	LABORATORY PHONE NUMBER:		GEOTRACKE	GEOTRACKER REQUIRED	YES	ON
		-	SITE SPECIF	SITE SPECIFIC GLOBAL ID NO.)
(SIGNATURE):	ANALYSES					
1834	2/0109			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	sien	
DATE TIME NUMBER	70 I		CONTAINER TYPE AND SIZE	Soil (S), Wat Apor (V), or ilfered ilfered	coled S/MSD o. of Contai	ADDITIONAL
45-1-			402 JAN	4	× _	3201204-01
45-V-R/R-SS-003 XX			7		-	79
15-4-R/R-52-84X	-/\		`			ŕ
45-4-12/R-52-005 XX					_	30-
CG78 45-7-1/2 -55-006 X X X					-	50
- - 			-		- -	9
45-V-RIO- 55-009 X						10.
45-4-12			-			No co
10/01/12 0450 45-4-KIR-55-011 XXX			402 1AL		-	7
1066 45 W RIA SC ON WITH						
0001 51/11		6	402 JAN	U		1
1005 83-V-RIA 155-001 CI/10/0		7	462 1Am	S		7)-
TEAR BUNN			BOTTLA	3	-	47
RELINOUISHED BY DATE THAT DECEN			OTTON OTTON		-	Amade Smith of Smith of Smith of Smith of Smith of Smith of Smith of
1		II W	OF CONTAINERS:		1/3	
LA PROTECT	NAME ALL ON	SAMPLING COMMENTS:		ZINOUIZ.		
1/2 1/00 m	S D WOLLOW	,00	2.	ま	THE	
1. COMIN	June 1		T 100	THE SIGN	H	
COMPANY AND COPOS CONTRACTION OF COMPANY COMPA	C. Can A	85 1	nad d	773112		
SIGNATURE: PRINTED NAME: PRINTED NAME:	ME	121	121 Innovation Drive, Suite 200	ite 200		R
COMPANY:		Irvine, Califori Tel 949.642.0245	_	la 92617-3094 Fax 949.642.4474	しりに	

APPENDIX B

AIS Wipe Sample Results and Locations

ab Report Date	Sample ID	PCB Detection Result ug/100 cm2	Status	Map Location	Phase Are
9/6/2013	Wipe Sample - A	ND	Equipment Sample	N/A	N/A
9/9/2013	Wipe Sample - A	ND	Recycled	1	- 1
9/12/2013	Wipe Sample - A	PCB - 1248 (2.5)	Disposed	2	- 1
	Wipe Sample - B	ND	Recycled	3	-
9/23/2013	Area - B	ND	Recycled	4	IIB
	Area - C	PCB - 1242 (27.2)	Disposed	5	IIB
	Pipe Sample	PCB - 1242 (3.4)	Disposed	6	IIB
10/21/2013	A - FDC	ND	Recycled	7	IIB
,,	B - FDC	ND	Recycled	8	IIB
12/4/2013	H - 5	ND	Recycled	9	I
12/4/2013	H - 15	ND ND	Recycled	10	·
	D - 5	ND	Recycled	11	
	D - 15	ND	Recycled	12	I
-	E - 5	ND	Recycled	13	- 1
	E - 15	ND	Recycled	14	- 1
-	F - 5	ND	Recycled	15	1
	F -15	ND	Recycled	16	1
	Area - A - 1	ND	Recycled	17	- 1
	Area - A - 2	ND	Recycled	18	- 1
-	Area - A - 3	ND	Recycled	19	1
			Recycled	20	IIB
	Area - C	ND ND			
	Area - P	ND ND	Recycled	21	I
	Stretcher Pit - 1	ND	Recycled	22	IIA
	Stretcher Pit - 2	ND	Recycled	23	IIA
2/5/2014	A - 5	ND	Recycled	24	- 1
	A - 10	ND	Recycled	25	-
	D - 20	ND	Recycled	26	- 1
	D - 25	ND	Recycled	27	IIA
	D - 30	ND	Recycled	28	IIA
	E - 20	ND ND	Recycled	29	I
	E - 25	ND ND	Recycled	30	IIA
	E - 30	ND	Recycled	31	IIA
	F - 20	ND	Recycled	32	- 1
	F - 25	ND	Recycled	33	IIA
	F - 30	ND	Recycled	34	IIA
	G - 20	ND	Recycled	35	-
	G - 25	ND	Recycled	36	IIA
	G - 30	ND	Recycled	37	IIA
	Substation #1	ND	Recycled	38	- 1
2/20/2014	Pipe Sample to Fruitland	1.76 (PCB-1248)	Left in place	39	- 1
2/20/2011	Draw Bench - B	ND	Recycled	41	IIA
				42	IIA
	Draw Bench - C	ND	Recycled		
	Trench Rack - A	0.43 (PCB-1248)	Disposed	43	- 1
	Trench Rack - B	0.96 (PCB-1248)	Disposed	44	ı
	Trench Rack - C	0.34 (PCB-1248)	Disposed	45	ı
	Line C	ND	Recycled	46	IIB
	Row 45	ND	Recycled	47	IIB
	A - 20	ND	Recycled	48	- 1
	A - 25	ND	Recycled	49	IIB
amples from 4A/4B*					
4/1/2014	1	1.82 (PCB-1248)	Disposed	50	IIB
, , .	2	1.25 (PCB-1248)	Disposed	51	IIB
	3	1.55 (PCB-1248)	Disposed	52	IIB
	4	1.89 (PCB-1248)	Disposed	53	IIB
				54	IIB
	5	6.11 (PCB-1248)	Disposed		
	6	1.79 (PCB-1248)	Disposed	55	IIB
	7	2.18 (PCB-1248)	Disposed	56	IIB
	8	0.38 (PCB-1248)	Disposed	57	IIB
	9	2.21 (PCB-1248)	Disposed	58	IIB
	10	0.25 (PCB-1248)	Disposed	59	IIB
	11	0.78 (PCB-1248)	Disposed	60	IIB
	12	0.11 (PCB-1248)	Disposed	61	IIB
	13	1.52 (PCB-1248)	Disposed	62	IIB
6/9/2014	E-40	ND	Recycled	63	IIA
	E-50	ND	Recycled	64	IV
	F-40	ND	Recycled	65	IIA
	F-50	ND	Recycled	66	IV
	G-40	ND ND	Recycled	67	IIA
	G-50	ND ND	Recycled	68	IV
6/16/2011	D-40			70	
6/16/2014		ND NB	Recycled		IIA D/
	D-50	ND NB	Recycled	71	IV
	D-60	ND	Recycled	72	IV
	E-60	ND	Recycled	73	IV
	F-60	ND	Recycled	74	IV
	G-60	ND	Recycled	75	IV
	H-30	ND	Recycled	76	IIA
	Cooling Tower-1	ND	Disposed	77	III
	Cooling Tower-2	0.815 (PCB-1248)	Disposed	78	III
	Cooling Tower-3	ND	Disposed	79	111
			•		IV
	Row 65 Pipe-1	ND ND	Recycled	80	
-			Recycled	81	IV
	Row 65 Pipe-2	ND			
	Row 69 Pipe-1	ND	Recycled	82	IV
					IV IV III

Wipe Samples Collected by American Integrated Services, Inc.

ab Report Date	Sample ID	PCBs 1248	PCBs 1260	Status	Map Location	Phase Ar
6/26/2014	Boyle Pipe-1	ND	ND	Disposed	85	I
	Boyle Pipe-2	ND	ND	Disposed	86	III
	Boyle Pipe-3	99.2	4.26	Disposed	87	III
	Boyle Pipe-4	ND	ND	Disposed	88	II
	Boyle Pipe-5	363	6.91	Disposed	89	IIB
	Boyle Pipe-6	6.41	ND	Disposed	90	IIB
	Boyle Pipe-7	182	6.34	Disposed	91	IIB
	Boyle Pipe-8	122	3.18	Disposed	92	IIB
	Boyle Pipe-9	7.49	ND	Disposed	93	IIB
	Boyle Pipe-10	1.72	ND	Disposed	94	IIB
	Boyle Pipe-11	1.65	ND	Disposed	95	IIB
	Boyle Pipe-12	ND	ND	Disposed	96	IIB
	Boyle Pipe-13	ND	ND	Disposed	97	IIB
	Boyle Pipe-14	ND	ND	Disposed	98	IIB
	Cooling Tower-1	ND	ND	Disposed	99	III
	Cooling Tower-2	ND	ND	Disposed	100	III
	Parcel 6-1	ND	ND	Recycled	101	V
	Parcel 6-2	ND ND	ND ND	Recycled	102	V
	Parcel 6-3	ND	ND	Recycled	103	V
	Parcel 6-4	ND	ND	Recycled	104	V
	Parcel 6-5	ND	ND ND	Recycled	105	V
	RR Tracks-1	ND	ND	Recycled	106	RR SPI
	RR Tracks-2	ND	ND ND	Recycled	107	RR SPI
	RR Tracks-3	ND	ND ND	Recycled	108	RR SPI
	RR Tracks-4	ND ND	ND ND	Recycled	109	RR SPI
	RR Tracks-5	ND ND	ND ND	Recycled	110	RR SPI
	RR Tracks-6	ND ND	ND ND	Recycled	111	RR SP
-	RR Tracks-7	ND ND	ND ND	Recycled	112	RR SPI
-		ND ND	ND ND		113	V V
-	RR Tracks-8			Recycled		V
_	RR Tracks-9	ND ND	ND ND	Recycled	114 115	
-1.0/00	RR Tracks-10	ND	ND	Recycled		V
7/10/2014	Phase IV-1	ND	ND	Recycled	116	IIA
	Phase IV-2	ND	ND	Recycled	117	IIA
	Phase IV-3	ND	ND	Recycled	118	IIA
	Phase IV-4	ND	ND	Recycled	119	IIA
	Phase IV-5	ND	ND	Recycled	120	IIA
	Phase IV-6	ND	ND	Recycled	121	IIA
	Phase IV-7	ND	ND	Recycled	122	IV
	Phase IV-8	ND	ND	Recycled	123	IV
	Phase IV-9	ND	ND	Recycled	124	IV
	Phase IV-10	ND	ND	Recycled	125	IV
	Phase IV-11	ND	ND	Recycled	126	IV
	Phase IV-12	ND	ND	Recycled	127	IV
_	Phase IV-13	ND	ND	Recycled	128	IV
	Phase IV-14	ND	ND	Recycled	129	IV
	Phase IV-15	ND	ND	Recycled	130	IV
	Phase V-1	ND	ND	Recycled	131	V
	Phase V-2	ND	ND	Recycled	132	V
	Phase V-3	ND	ND	Recycled	133	V
	Phase V-4	ND	ND	Recycled	134	٧
	Phase V-5	ND	ND	Recycled	135	V
	FDC1-1	ND	ND	Recycled	136	IIB
	FDC1-2	ND	ND	Recycled	137	IIB
F	FDC4-1	ND	ND	Recycled	138	IIB
-	FDC4-2	ND	ND	Recycled	139	IIB

Notes
N/A = Not applicable
ND = Not Detected
ug/100 cm2 = micrograms per 100 centimeters squared
EPA Method 8082

LEGEND

REMOVED PIPE

PHASE V - PIPE REMOVALS BELOW GRADE DEMOLITION & SOIL EXCAVATION PECHINEY CAST PLATE, INC., FACILITY 3200 FRUITLAND AVENUE, VERNON, CALIFORNIA

Environmental Laboratories

Client:

American Integrated Services

Lab Job No.:

A406090

Project:

Matrix:

Pechiney/33210

Project Site:

Batch No.

3200 Fruitland Ave., Vernon, CA 90058

Wipe sample

AF29-PCBS1

Extraction Method: EPA 3550B

Date Sampled: Date Received:

06-26-2014 06-26-2014

Date Extracted:

06-26-2014

Date Analyzed:

06-29-2014

Date Reported:

07-02-2014

EPA 8082 (PCB's)

Reporting Units: μg/100 cm²

Sample ID	Lab ID	DF	PCB- 1016	PCB- 1221	PCB- 1232	PCB- 1242	PCB- 1248	PCB- 1254	PCB- 1260
Method Detect. L	imit (MDL)		0.1	0.2	0.1	0.1	0.1	0.1	0.1
Method Blank		1	ND						
Boyle Pipe-1	A406090-1	1	ND						
Boyle Pipe-2	A406090-2	1	ND						
Boyle Pipe-3	A406090-3	20	ND	ND	ND	ND	99.2	ND	4.26
Boyle Pipe-4	A406090-4	1	ND						
Boyle Pipe-5	A406090-5	50	ND	ND	ND	ND	363	ND	6.91
Boyle Pipe-6	A406090-6	1	ND	ND	ND	ND	6.41	ND	ND
Boyle Pipe-7	A406090-7	20	ND	ND	ND	ND	182	ND	6.34
Boyle Pipe-8	A406090-8	10	ND	ND	ND	ND	122	ND	3.18
Boyle Pipe-9	A406090-9	1	ND	ND	ND	ND	7.49	ND	ND
Boyle Pipe-10	A406090-10	1	ND	ND	ND	ND	1.72	ND	ND
Boyle Pipe-11	A406090-11	1	ND	ND	ND	ND	1.65	ND	ND
Boyle Pipe-12	A406090-12	1	ND						
Boyle Pipe-13	A406090-13	1	ND						
Boyle Pipe-14	A406090-14	1	ND						
Cooling Tower-1	A406090-15	1	ND						
Cooling Tower-2	A406090-16	1	ND .	ND	ND	ND	ND	ND	ND

MDL=Method Detection Limit;

MB=Method Blank;

DF=Dilution Factor;

ND=Not Detected (below DF \times MDL).

Environmental Laboratories

Client:

American Integrated Services

Lab Job No.:

A406090

Project:

Pechiney/33210

Project Site:

3200 Fruitland Ave., Vernon, CA 90058

Date Sampled:

06-26-2014

Matrix:

Wipe sample

Date Received:

06-26-2014

Extraction Method: EPA 3550B

Date Extracted:

06-26-2014

Batch No.

AF29-PCBS1/AF29-DS2

Date Analyzed: Date Reported:

06-29/30-2014 07-02-2014

EPA 8082 (PCB's)

Reporting Units: µg/100 cm²

Sample ID	Lab ID	DF	PCB- 1016	PCB- 1221	PCB- 1232	PCB- 1242	PCB- 1248	PCB- 1254	PCB- 1260
Method Detect. L	imit (MDL)	ļ	0.1	0.2	0.1	0.1	0.1	0.1	0.1
Method Blank		1	ND						
Parcel 6-1	A406090-17	1	ND						
Parcel 6-2	A406090-18	1	ND						
Parcel 6-3	A406090-19	1	ND						
Parcel 6-4	A406090-20	1	ND						
Parcel 6-5	A406090-21	1	ND	ND	ND	* ND	ND	ND	ND
Rail Road Tracks-1	A406090-22	1	ND						
Rail Road Tracks-2	A406090-23	1	ND						
Rail Road Tracks-3	A406090-24	1	ND						
Rail Road Tracks-4	A406090-25	1	ND						
Rail Road Tracks-5	A406090-26	1	ND						
Rail Road Tracks-6	A406090-27	1	ND						
Rail Road Tracks-7	A406090-28	1	ND						
Rail Road Tracks-8	A406090-29	1	ND						
Rail Road Tracks-9	A406090-30	1	ND						
Rail Road Tracks-10	A406090-31	1	ND						
Trip Blank	A406090-32	1	ND						

MDL=Method Detection Limit;

MB=Method Blank;

DF=Dilution Factor;

ND=Not Detected (below DF \times MDL).

Environmental Laboratories

07-02-2014

EPA 8082 Batch QA/QC Report

Client:

American Integrated Services

Project:

Pechiney/33210

Matrix:

Solid

Batch No.

AF29-PCBS1

Lab Job No:

A406090

Lab Sample ID:

SW406029-1

Date Analyzed:

06-29-2014

I. MS/MSD Report

Unit: ppm

Analyte	Method Blank	Spike Conc.	MS	MSD	MS %Rec.	MSD %Rec.	% RPD	%RPD Accept. Limit	%Rec Accept. Limit
1016	ND	0.5	0.536	0.542	107.2	108.4	1.1	30	46-127
1260	ND	0.5	0.497	0.488	99.4	97.6	1.8	30	31-134

II. LCS Result Unit: ppm

Compound	LCS Report Value	True Value	Rec.%	Accept. Limit
1016	0.512	0.5	102.4	80-120
1260	0.572	0.5	114.4	80-120

ND:Not Detected (at the specified limit).

Environmental Laboratories

07-02-2014

EPA 8082 Batch QA/QC Report

Client:

American Integrated Services

Pechiney/33210

Project: Matrix:

Solid

Batch No.

AF29-PCBS2

Lab Job No:

A406090

Lab Sample ID:

SW406029-2

Date Analyzed:

06-30-2014

I. MS/MSD Report

Unit: ppm

Analyte	Method Blank	Spike Conc.	MS	MSD	MS %Rec.	MSD %Rec.	% RPD	%RPD Accept. Limit	%Rec Accept. Limit
1016	ND	0.5	0.584	0.576	116.8	115.2	1.4	30	46-127
1260	ND	0.5	0.551	0.531	110.2	106.2	3.7	30	31-134

II. LCS Result Unit: ppm

Compound	LCS Report Value	True Value	Rec.%	Accept. Limit
1016	0.559	0.5	111.8	80-120
1260	0.505	0.5	101.0	80-120

ND:Not Detected (at the specified limit).

ALPHA SCIENTIFIC CORF-JRATION

Page F of 2

CHAIN OF CUSTODY RECORD

Lab Job Number Atto6090 Sample Condition 2-3 days Normal C Rush 8 12 24 hrs Chilled A Intact Remark □ Sample seals Time

S: FS PM Container types: M=Metal Tube

R=Air Bag P=Plastic bottle

T-Alecs hottle

V=VOA vial Analyses Requested 8/26/12 808S (ECBa) X X × × × メ × × × ᆺ × メ CAM Metals 8270C(SVOCs) 8260B (VOCs) Company 8260B(BTEX, Oxygenates) Company 8015M(Diesel) (SailossD) Mč108 1,20mg 16m 02') & size of No.,type* container fork Sampled by Reduined Preserv eccived by Sample Matrix Type 3200 FRUTTAND AVE, VERNON S 所 E T 310-522-1168 310-522-0474 8 CA 90744 888 Time 88 04/00 Sample Collect 9620 08tb 9886 998 83% SES/ Sec 8 8656 855 945/ E American Integrated Services, Inc. Date lotze St., Wilmington, 7 9)--12 4 3 7 <u>د</u> 7 Lab Sample ID 44ceopo-1 ompany Ī Company Project Site g 3320 13 9 2 ド = と 1 ٩ 7 5 3 Boyle Pipe - 1 Client Sample ID - read michael 1502 E. arp Blank Project Name/No. RECHINEY

Alpha Scientific Corporation 16760 Gridley Road Cerritos, CA 90703

Email: Tel: Fax:

ascorp@verizon.net (562) 809-8880 (562) 809-8801

Note: Samples are discarded 30 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client's expense. Distribution: WHITE with report, PINK to courier.

5

ALPHA SCIENTIFIC COR. RATION

CHAIN OF CUSTODY RECORD

Lab Job Number A 406090

Pag 4 of 2

Sample Condition □ 2-3 days A Normal 2 Rush 8 12 24 hrs Chilled Mutact Remark ☐ Sample seals Container types: M=Metal Tube A=Air Bag P=Plastic bottle G=Glass bottle V=VOA vial A=Air Bag G=Glass bottle 7: K E Analyses Requested × 8082 (PCBs) × 人 メ × × × メ メ X X X CAM Metals 8270C(SVOCs) 8760B (VOCs) 8260B(BTEX, Oxygenates) Company 8015M(Diesel) (anilossD) Mč108 & size of No.,type* container lymor, eceived by ceived by Sample Preserv 90078 Sampled by 3200 FRUTTLAND AVE, VEDMON CA Matrix Type とある 310-522-1168 310-522-0474 St., Wilmington, CA 90744 Time Sample Collect 1020 0 47 55.50 010 1920 0% 200 <u>ड</u>ू ,2 3 1015 *`*₹ 8 8 2 × 5/ American Integrated Services, Inc. A406090-16 20/20/14 Date -17 مد より 04-Lab Sample ID ン 12 مح かっ ど Company 7 2 4 Project Site g 133210 5 Coaluly Tayer-2 ۹ 18 4 7 P 4 PAUTOND THREE Client Sample ID 1 ,5, 图 7 3 1502 C. PERNO Project Name/No PARCEL 6 **coort Attention** 在五五

Alpha Scientific Corporation 16760 Gridley Road Cerritos, CA 90703

ascorp@verizon.net (562) 809-8880 (562) 809-8801 Email: Tel: Fax:

Note: Samples are discarded 30 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client's expense. Distribution: WHITE with report, PINK to courier.

Environmental Laboratories

07-16-2014

Mr. Carlos Pelayo American Integrated Services 1502 E. Opp Street Wilmington, CA 90744

Project:

Pechiney/33210

Project Site:

3200 Fruitland Ave., Vernon, CA 90058

Sample Date:

07-10-2014

Lab Job No.:

A407025

Dear Mr. Pelayo:

Enclosed please find the analytical report for the sample(s) received by Alpha Scientific Corporation on 07-10-2014 and analyzed by the following EPA methods:

EPA 8082 (PCBs)

All analyses have met the QA/QC criteria of this laboratory.

The sample(s) arrived in good conditions and with a chain of custody record attached.

Alpha Scientific Corporation is a CA DHS certified laboratory (Certificate Number 2633). Thank you for giving us the opportunity to serve you. Please feel free to call me at (562) 809-8880 if our laboratory can be of further service to you.

Sincerely,

Roger Wang, Ph.D.

Laboratory Director

Enclosures

This cover letter is an integral part of this analytical report.

Environmental Laboratories

Client:

American Integrated Services

Lab Job No.:

A407025

Project:

Pechiney/33210

Project Site:

3200 Fruitland Ave., Vernon, CA 90058

Date Sampled:

07-10-2014

Matrix:

Wipe sample

Date Received:

07-10-2014

Extraction Method: EPA 3550B

Date Extracted:

07-10-2014

Batch No. AG11-PCBS1

Date Analyzed: Date Reported:

07-11-2014 07-16-2014

EPA 8082 (PCB's)

Reporting Units: μg/100 cm²

				στιτου. με					
Sample ID	Lab ID	DF	PCB- 1016	PCB- 1221	PCB- 1232	PCB- 1242	PCB- 1248	PCB- 1254	PCB- 1260
Method Detect. L	imit (MDL)		0.1	0.2	0.1	0.1	0.1	0.1	0.1
Method Blank	10	1	ND	ND	ND	ND	ND	ND	ND
Phase IV-1	A407025-1	1	ND	ND	ND	ND	ND	ND	ND
Phase IV-2	A407025-2	1	ND	ND	ND	ND	ND	ND	ND
Phase IV-3	A407025-3	1	ND	ND	ND	ND	ND	ND	ND
Phase IV-4	A407025-4	1	ND	ND	ND	ND	ND	ND	ND
Phase IV-5	A407025-5	1	ND	ND	ND	ND	ND	ND	ND
Phase IV-6	A407025-6	1	ND	ND	ND	- ND	ND	ND	ND
Phase IV-7	A407025-7	1	ND	ND	ND	ND	ND	ND	ND
Phase IV-8	A407025-8	1	ND	ND	ND	ND	ND	ND	ND
Phase IV-9	A407025-9	1	ND	ND	ND	ND	ND	ND	ND
Phase IV-10	A407025-10	1	ND	ND	ND	ND a	ND	ND	ND
Phase IV-11	A407025-11	1	ND	ND	ND	ND	ND	ND	ND
Phase IV-12	A407025-12	1 -	ND	ND	ND	ND	ND	ND	ND
Phase IV-13	A407025-13	1	ND	ND	ND	ND	ND	ND	ND
Phase IV-14	A407025-14	1	ND	ND	ND	ND	ND	ND	ND
Phase IV-15	A407025-15	1	ND	ND	ND	ND	ND	ND	ND
Trip Blank	A407025-16	1	ND	ND	ND	ND	ND	ND	ND

MDL=Method Detection Limit;

MB=Method Blank;

DF=Dilution Factor;

ND=Not Detected (below DF × MDL).

Environmental Laboratories

Client:

American Integrated Services

Lab Job No.:

A407025

Project:

Pechiney/33210

Project Site:

3200 Fruitland Ave., Vernon, CA 90058

Date Sampled:

07-10-2014

Matrix:

Wipe sample

Date Received:

07-10-2014

Date Extracted:

07-10-2014

Extraction Method: EPA 3550B

Date Analyzed:

07-11/12-2014

Batch No.

AG11-PCBS1/AG11-PCBS2

Date Reported:

07-16-2014

EPA 8082 (PCB's)

Reporting Units: µg/100 cm²

	T	T				T	1	1	
Sample ID	Lab ID	DF	PCB- 1016	PCB- 1221	PCB- 1232	PCB- 1242	PCB- 1248	PCB- 1254	PCB- 1260
Method Detect. L	imit (MDL)		0.1	0.2	0.1	0.1	0.1	0.1	⁴ 0.1
Method Blank		1	ND						
Phase V-1	A407025-17	1	ND						
Phase V-2	A407025-18	1	ND						
Phase V-3	A407025-19	1	∥ ND	ND	ND	ND	ND	ND	ND
Phase V-4	A407025-20	1	ND						
Phase V-5	A407025-21	1	ND						
FDC1-1	A407025-22	1	ND						
FDC1-2	A407025-23	1	ND	ND	ND	ND ®	ND	ND	ND
FDC4-1	A407025-24	1 ::	ND						
FDC4-2	A407025-25	1	ND						
				1 11		=		10	

MDL=Method Detection Limit;

MB=Method Blank;

DF=Dilution Factor;

ND=Not Detected (below DF × MDL).

Environmental Laboratories

07-16-2014

EPA 8082 Batch QA/QC Report

Client:

American Integrated Services

Project:

Pechiney/33210

Matrix:

Solid

Batch No.

AG11-PCBS1

Lab Job No:

A407025

Lab Sample ID:

SW407011-1.

Date Analyzed:

07-11-2014

I. MS/MSD Report

Unit: ppm

Analyte	Method Blank	Spike Conc.	MS	MSD	MS %Rec.	MSD %Rec.	% RPD	%RPD Accept. Limit	%Rec Accept. Limit
1016	ND	0.5	0.577	0.582	115.4	116.4	0.9	30	46-127
1260	ND	0.5	0.516	0.519	103.2	103.8	0.6	30	31-134

II. LCS Result Unit: ppm

Compound	LCS Report Value	True Value	Rec.%	Accept. Limit
1016	0.560	0.5	112.0	80-120
1260	0.492	0.5	98.4	80-120

ND:Not Detected (at the specified limit).

Environmental Laboratories

07-16-2014

EPA 8082 Batch QA/QC Report

Client:

American Integrated Services

Project:

Pechiney/33210

Matrix:

Solid

Batch No.

AG11-PCBS2

Lab Job No:

A407025

Lab Sample ID:

SW407011-2

Date Analyzed:

07-12-2014

I. MS/MSD Report

Unit: ppm

Analyte	Method Blank	Spike Conc.	MS	MSD	MS %Rec.	MSD %Rec.	% RPD	%RPD Accept. Limit	%Rec Accept. Limit
1016	ND	0.5	0.574	0.582	114.8	116.4	1.4	30	46-127
1260	ND	0.5	0.536	0.542	107.2	108.4	1.1	30	31-134

II. LCS Result Unit: ppm

Compound	LCS Report Value	True Value	Rec.%	Accept. Limit
1016	0.595	0.5	119.0	80-120
1260	0.577	0.5	115.4	80-120

ND:Not Detected (at the specified limit).

ALPHA SCIENTIFIC COF RATION

Pa of 2

CHAIN OF CUSTODY RECORD

Client			CHAIN OF	▝	USTO	CUSTODY RECORD	ORD					Lab Job Number 4407025	umber A	250704
	American Integrated Services, Inc.	ices,]	[nc•	8						Analyses Requested	luested		TAT	T.A.T. Requested
1502 E. Opp	St., Wilmington,		CA 90744					(\$					Rush	2 Rush 8 12 24 hrs
		Fex		Samulad			_	-ten			55.55			mumbai Keran c-z
C. 1840	310-522-1168 310-522-0474	310-5	22-0474	REAND	AYO		(₩8A)		_		-	Sample	Sample Condition
Project Name/No.							-				SG:		D Chille	D Chilled Martes
1000 1 35210	3200 PRUTUAND AVE	TAND	٦	VERNEN	F	90058	26 (0	Diese)))	SVOC) a)		D Sample seals	seals
Client	•	Sampl	Sample Collect	Matrix	Comple	No.type*		_	-	M N	70			Remark
. Sample ID	Sample ID ·	Date	Time	Type	_	container				CVI				
Putte to 1	1-2507046	4/0/F	400	必用		1,20mg		\vdash		×			_	
7-		4 1 4				_		-		>		-	1	
-3	-3		410			-		H			×			
7	ή-		915	_		_		+		+	 x		1	
5	3		970			-		\vdash		3			1	
9-	9-		ars					-			×			
£ -	7		930					\vdash			>	F		
	o.		938							×				
*	-4		940					-		X				
0/-	0-		Shb					ŀ		×				
	¥		960					-			×		_	
2/_	7)-		455					-		×				
-13	213	\exists	1000							*				Į.
7	<i>5</i>)-		100%	-				_		×				
50	5)+	-	1010							×				
TEP RINDE	91	P		Q-	٠	Q		_		٧	Ė			
Kelinguished by Q	Company		北	Time Sec	Received by	j		Company	J	/-//C	T Till E	Time	s: M=Metal	npe.
Relinquished by				Time	Reg Aved by		٠ .	Company	.1	1	_	G=Glass bottle	P=Plastic bottle V=VOA vial	offic ad
Contract of the Contract of th	To be distributed by the second section of the last section is not as the second section is not as the	Street, or other Designation of the last o	- Committee of the last of the							_	_			

Alpha Scientific Corporation 16760 Oridley Road Cerritos, CA 90703

Email: Tel: Fax:

ascorp@verizon.net (562) 809-8880 (562) 809-8801

Note: Samples are discarded 30 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client's expense. Distribution: WHITE with report, PINK to courier.

ŧ

ALPHA SC

ALPHA SCIENTIFIC COL RATION

CHAIN OF CUSTODY RECORD

Lab Job Number & 407076

Pa Jof 2

Sample Condition 2-3 days Ar Normal O Rush 8 12 24 hrs Chilled of Intact Remark ☐ Semple seals M=Metal Tube PerPlastic bottle V=VOA vial GeGlass bottle S: 00 E Analyses Requested 7/01/4 × 8082 (PCBs) × メ × CAM Metals 8570C(SVOCs) 8760B (VOCs) Contraction 8560B(BTEX, Oxygenates) Company 8015M(Diesel) (anilozaD) Mč108 1,20m/d No.,type*
& size of
container 9007X \$ Sample Preserv Recived by FRUTIAND AND WERDOW Matrix Type 23 500 E 310-522-1168 310-522-0474 1130 35 Opp St., Wilmington, CA 90744 Sample Collect Time Olyc 1 3% 3 120 Ē 12% 5 115 American Integrated Services, Inc. 1110H Deta A40705-17 6 7 Cab Sample ID 38.00 PUMBET -2 7 Client Sample ID 1502 E. PELANO PECHINE 2 3 1 FDLY 122

Alpha Scientific Corporation 16760 Gridley Road Certitos, CA 90703

Email: ascorp@verizon.net Tel: (562) 809-8880 Fax: (562) 809-8801

Note: Samples are discarded 30 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client's expense. Distribution: WHITE with report, PINK to courier.

APPENDIX C

NORM Report

Report ID Number: AIS-OSI-2014-4-14, Rev 0

Title: Unknown Isotopic Identification and Quantification

American Integrated Services

1502 E. Opp Street

Willmington, CA 90744-3927

Date Prepared: April 17, 2014

Prepared By:

Linda Bray

Misala Enalde.

Linda Prov. Sanjar Haalth Physicia

Linda Bray, Senior Health Physicist, CHP

Nicola Rinaldi, Senior Health Physicist

Occupational Services, Inc. (OSI) 6397 Nancy Ridge Drive San Diego, CA 92121 619-252-2211

Reviewed By:

David Herrera

Purpose:

OSI performed on-site surveys on six selected sample bricks located at 3200 Fruitland Avenue (corner of Boyle and Fruitland) in Vernon, California. The material and items were identified as potentially radioactive by American Integrated Services based on the appearance of the bricks and prior experience at the site. The onsite analysis work was performed on April 14, 2014 and was followed up by laboratory analysis at Occupational Services Inc. (OSI) facility at 6397 Nancy Ridge Dr., San Diego CA. OSI weighed, photographed, inspected, sampled, analyzed and surveyed the material to validate the assessments.

The purpose of the analysis was to identify the type of radioactive materials present, determine if the material is considered naturally occurring (pipe scale, rocks, etc.), technically enhanced or byproduct material, and estimate the quantity of radioactive material present for disposal purposes.

Scope:

The scope of the analysis involved materials contained in six separate sample bricks identified by American Integrated Services and provided to OSI for evaluation. This project was limited to identification of radioactive material, and estimation of gross quantity. No specific recommendations or preparation for disposal was included. However, information on regulatory licensing status, and potential options for disposal are provided for selected items where appropriate.

Background

Refractory brick with low levels of naturally occurring radioactive materials had been previously identified at the Fruitland site. Refractory brick can withstand extremely high temperatures and is used to build steel and glass furnaces. The brick is made by fusing zircon sand with alumina and sodium carbonate. The minerals used to make the bricks contain low levels of naturally occurring uranium and thorium. Typical activities in the minerals used to make the bricks range from 1 to 10 Bq/g Uranium (U-238 and daughter products) and 0.2 to 10 Bq/g Thorium (Th-232 and daughter products). This would equate to 27 to 270 pCi/g of Uranium and 5 to 270 pCi/g of Thorium. The radioactive material in the raw minerals is assumed to be in secular equilibrium prior to processing to make the finished bricks. The finished bricks can be expected to contain similar levels of radioactive materials as the raw minerals excluding the more volatile radionuclides which may be removed when the zircon is fused. Based on information from reference 4 the volatile daughter products of U-238 (Ra-226, Pb-210, Po-210) are more likely to be removed during the zircon processing resulting in lower activities of these Uranium decay products relative to Thorium.

The site where the bricks were located previously contained furnaces used to recycle aluminum, and earlier excavations of the furnaces indicated low levels of radioactive material in the bricks, primarily Thorium. American Integrated Services identified similar bricks during a recent excavation and requested OSI to analyze the material and confirm if the bricks contained radioactive material.

The bricks identified for the current evaluation had a slightly different appearance than the earlier set of bricks and included a larger variation in color and aggregate composition.

Methodology and Assumptions:

OSI used the following instruments to make assessments of the material.

- S.E. International URSA-II Universal Radiation Spectrum Analyzer (Multichannel Analyzer MCA) s/n 200177 and an Alpha Spectra, Inc. 2" Flat Sodium Iodide Scintillation Detector s/n 062310AH were used to make the radionuclide identification. The MCA was calibrated with NIST-traceable Ra-226 source (S/N 909-98) and energy tested with additional reference sources of Cs-137 and Co-60.
- Ludlum Model 3, S/N 122603 with a Ludlum Model 44-10 two-inch diameter sodium iodine scintillation detector, S/N 91825 for localization of radioactivity
- RadEye PRD, S/N 30401 for low level dose rate measurements.

Six bricks were selected at random from two piles of bricks at the excavation site. The bricks were intact and of similar shape and size. However, the bricks varied in appearance from beige to red, and in terms of the internal aggregate size and composition. The red bricks were similar to each other in color, strength or hardness and internal structure. The beige bricks ranged from a pale beige to a more yellow external coloring, and varied in the internal composition from a larger aggregate to a smoother texture.

The count rate surveys were performed on contact with each brick with the Model 3 and the 44-19 Nal detector to assess general activity levels. A dose rate survey with the RadEye PRD was also performed on contact with each brick. Samples of the brick were taken back to OSI's facility for an MCA analysis to determine the gamma emitting isotopic composition. Portions of the brick were crushed to place into a Marinelli beaker for isotopic analysis. Comparison of the assessed isotopic composition and activity levels relative to expected quantities based on historical information was also performed. The activity in the sample was estimated from the weight of the sample, historical information regarding maximum percent concentration of radioactive material and the MCA analysis.

For disposal purposes the activities are provided in pCi/g. The estimated activity concentration of Th-232 and U-238 in the raw minerals used to make the brick from historical records is 5 to 270 pCi/g and 80 to 270 pCi/g respectively. Refractory brick if present is expected to contain activity in the range of 5 to 270 pCi/g of Thorium products and 1 to 20 pCi/g of Uranium products due to evolution of the Ra-226, Pb-210 and Po-210 during processing.

Figure 1 and 2: Brick piles at the site

Figure 3 and 4: Beige bricks and red bricks

Results:

The background count rate on the Ludlum Model 3 with the Ludlum model 44-10 Sodium lodide detector was approximately 3,000 to 5,000 cpm. The count rate on each of the bricks was approximately 4,000 to 5,000 cpm. The background dose rate on the RadEye PRD was approximately 4 uR/hr. The dose rate on each of the bricks was approximately 4 uR/hr. The direct survey methods did not indicated detectable levels of radioactive material in the bricks. The MCA results indicated Uranium and Thorium daughter products. Results of the evaluation are included in Table 1 below.

The samples of crushed brick were analyzed with the MCA system using a 20 minute count. The values for Thorium were based on the average of the concentrations determined from the peak activities of Bi-212 and Pb-212. The concentration for Uranium was based on the average concentrations determined from the peak activities for Pb-214 and Bi-214. If no peaks were identified for the daughter products in the sample the concentration was estimated from the minimum detectable concentration (MDC) in the channels where the peaks would have been located. The results were then compared to the expected concentration ranges specified in the references to verify consistency. Results of the evaluation are included in Table 1 below.

Table 1

					DIE 1	
Sample Number	Description	Isotope	Activity pCi/g	Weight of Material grams	TENORM	Photo & Description
1	Beige brick. No detectable activity above background was noted with the Model 3 & Nal detector or the PRD	Uranium and Thorium daughter products identified with MCA.	5.6 pCi/g Uranium 7.6 pCi/g Thorium	461	Yes	

Sample Number	Description	Isotope	Activity pCi/g	Weight of Material grams	TENORM	Photo & Description
2	Red brick. No detectable activity above background was noted with the Model 3 & Nal detector or the PRD	Uranium and Thorium daughter products identified with MCA.	2.8 pCi/g Uranium 2.7 pCi/g Thorium	570	Yes	Snart Ipple
3	Red brick. No detectable activity above background was noted with the Model 3 & Nal detector or the PRD	Uranium and Thorium daughter products identified with MCA.	2.5 pCi/g Uranium 2.8 pCi/g Thorium	543	Yes	Soldie

Sample Number	Description	Isotope	Activity pCi/g	Weight of	TENORM	Photo & Description
Number			pong	Material grams		
4	Beige brick. No detectable activity above background was noted with the Model 3 & Nal detector or the PRD	Uranium and Thorium daughter products identified with MCA.	2.5pCi/g Uranium 2.7 pCi/g Thorium	624	Yes	Ziplos
5	Beige brick. No detectable activity above background was noted with the Model 3 & Nal detector or the PRD	Uranium and Thorium daughter products identified with MCA.	1.9pCi/g Uranium 2.7 pCi/g Thorium	531	Yes	ZINK
6	Beige brick. No detectable activity above background was noted with the Model 3 & Nal detector or the PRD	Uranium and Thorium daughter products identified with MCA.	1.9pCi/g Uranium 2.5 pCi/g Thorium	712	Yes	

Conclusion and Discussion: The bricks contain low levels of naturally occurring uranium and thorium daughter products. The material would be considered technically enhanced naturally occurring radioactive material (TENORM). Technologically-Enhanced, Naturally-Occurring Radioactive Material (TENORM) is produced when activities such as uranium mining, or sewage sludge treatment, concentrate or expose radioactive materials that occur naturally in ores, soils, water, or other natural materials. The concentration in the bricks is less than10 pCi/g and less than the previous refractory brick activity levels. The concentration of the Uranium and Thorium is fairly evenly distributed in the bricks, which is different than the previous refractory bricks that had higher concentrations of Thorium daughters as expected. The current bricks may not have been actual refractory bricks used in the furnaces and may be just structural building materials.

References

- 1. NUREG 1717 Systematic Radiological Assessment of Exemptions for Source and Byproduct Materials
- 2. Tsurikov, N., Hinrichsen, P., Omar, M., Horst, R., Regulation of Natural Radioactiveity in Internaltional Transport and Trade, Radium Historical Items Catalog Final Report August 2008, M. A. Buchholz, M. Cervera.
- 3. Cooper, M., Naturally Occurring Radioactive Materials (NORM in Australian Industries Review of Current Inventories and Future Generation, Report to Radiation Health and Safety Advisory Council, ERS-006, September 2005.
- 4. http://www.world-nuclear.org/info/Safety-and-Security/Radiation-and-Health/Naturally-Occurring-Radioactive-Materials-NORM/#.UnJpZpnn_t4

APPENDIX D

In Place Structure Information

BENCHMARK:

VERTICAL DATUM NAVD88

COUNTY OF LOS ANGELES BM #Y10598, 2" DISC IN WALK 4.6' N/O CF, 14.8' W/O BCR AT NE COR SLAUSON AVE AND BOYLE AVE (TO THE N) MKD (CITY OF VERNON MON)

2005 ELEV= 168.611 FEET NAVD88

HORIZONTAL DATUM NAD83, ZONE 5

Structure 917 - Survey Data Pechiney - Phase V Area

Label	Easting	Northing	Elevation
4666	6497696.2714	1819379.9656	169.11
4667	6497694.6032	1819379.0364	169.04
4668	6497693.3732	1819376.8112	169.00
4669	6497696.6676	1819372.0345	169.12

NGS PID STATIONS AJ1840 AND AJ1885 EPOCH DATE 2000.35

APPENDIX E

Compaction Testing Report and Crushed Concrete Gradation Information **NorCal Engineering**

Soils and Geotechnical Consultants 10641 Humbolt Street Los Alamitos, CA 90720 (562) 799-9469 Fax (562) 799-9459

December 3, 2014

Project Number 17007-13

American Integrated Services P.O. Box 92316 Long Beach, California 90809

Attn: David Herrera

Re: Report of Compaction Tests (Phase V) - Located at 3200 Fruitland Avenue, in the City of Vernon, California

Dear Mr. Herrera:

Pursuant to your request, this firm has provided this geotechnical report to summarize the observation and testing performed by this firm at the above referenced project. Our geotechnical services are summarized in the subsequent sections of this report.

Backfill Operations

The scope of our services within Phase V consisted of compaction tests located at the bottom of a storm drain trench and in an excavation (pothole) provided by the contractor. Compaction tests at these locations revealed a minimum of 90% relative compaction. An excavator mounted sheepsfoot wheel was utilized for compaction control. A water truck provided moisture control.

Laboratory/Field Testing

The relative compaction was determined by Sand Cone Method (ASTM: D1556-07). The maximum density of the fill soils was obtained by the laboratory standard (ASTM: D1557-07) and results are shown on Table I. A summary of the compaction tests are included with locations shown on the accompanying plan.

No chemical analysis of soils was performed by this firm and is not within the scope of our services.

We appreciate this opportunity to be of service to you. If you have any further questions, please do not hesitate to contact the undersigned.

Respectfully submitted,

NORCAL ENGINEERIN

Keith D. Tucker Project Engineer R.G.E. 841 Walter K. Mott Project Manager

Waltheller

TABLE I MAXIMUM DENSITY TESTS (ASTM: D1557-07)

<u>Sample</u>	Classification	Optimum <u>Moisture</u>	Maximum Dry Density (lbs./cu.ft.)
1	Silty SAND	11.0	110.5
H	Sandy SILT	11.5	119.0

SUMMARY OF COMPACTION TEST RESULTS

Date of <u>Test</u>	Test <u>No.</u>	Location	Depth	Percent <u>Moisture</u>	Unit Wt. lbs./cu.ft.	Relative Compaction	Soil <u>Type</u>	Test S/D
9/24/14	101	Storm Drain Bottom	8.0-8.5	8.6	95.4	86	I	S
9/24/14	101A**	Storm Drain Bottom	8.0-8.5	10.3	101.3	92	1	S
9/24/14	102	Storm Drain Bottom	3.5-4.0	9.1	104.5	88	11	S
9/24/14	102A**	Storm Drain Bottom	3.5-4.0	10.0	107.3	90	11	S
9/24/14 9/24/14	103 104	Pothole Excavation Pothole Excavation	2.0-2.5 4.0-4.5	9.5 9.8	100.2 102.8	91 93	l l	S S

**Retest of failing tests after area reworked S= Sand Cone Method

U.S. Standard Sieve Size

NorCal Engineering

SOILS AND GEOTECHNICAL CONSULTANTS

For Fine & Coarse Aggregates and **Hydrometer Analysis**

ASTM C136 & ASTM D422

A.I.S.

PROJECT NUMBER: 17007-13 DATE:

4/16/2014

U.S. Standard Sieve Size

DATE:

3/19/2014

A.I.S.

PROJECT NUMBER:

17007-13

Hydrometer Analysis

ASTM C136 & ASTM D422

U.S. Standard Sieve Size Cobbles Gravel Sand **Hydrometer Analysis** Clay Fine Medium Fine Clay (Plastic) to Silt (Non-Plastic) Coarse Coarse #100 465 min 1545 min 3/8in #16 100 90 80 Percent Finer By Weight 30 10 100.000 10.000 1.000 0.100 0.010 0.001 Diameter of Particle (mm) 1 1/2 in. 3/4 in. #4 #30 #200 Boring/ % Finer % Finer Depth (ft) % Finer % Finer % Finer 135-14 100 69 25 14 5 138-14 100 63 25 16 4 \Diamond **NorCal Engineering Sieve Analysis** For Fine & Coarse Aggregates and

SOILS AND GEOTECHNICAL CONSULTANTS

A.I.S.

1/28/2014 17007-13 DATE: PROJECT NUMBER:

Hydrometer Analysis

ASTM C136 & ASTM D422

APPENDIX F

Record Drawings (Site-Wide)

Below grade structure

Previously decommissioned and concrete capped buried structures (1A, 1B, and 1C) and concrete slab (1D) [Ursic, 1999]

Terminated piping

———————— Site boundary

(69) (G) Column and row numbering system for footings

---- Phase boundary ---x----x------ Chain link fence Railroad tracks (at grade) Building pad and footings Benchmark:

Vertical Datum NAVD88

County of Los Angeles BM #Y10598, 2" Disc in walk 4.6' N/O CF, 14.8' W/O BCR at NE COR Slauson Avenue and Boyle Avenue (to the N) MKD (City of Vernon MON)

NGS PID Stations AJ1840 and AJ1885 EPOCH DATE 2000.35

2005 Elev= 168.611 Feet NAVD88

Horizontal Datum NAD83, Zone 5

Note:

Record drawings for buried structures 1A, 1B, and 1C, and concrete slab 1D are based on prior as built records and were not verified as part of this work.

Basemap modified from Pechiney Cast Plate, Inc. Site Plan dated January 9, 2002; Aluminum Company of America "Works General-MPA" Figure dated October 10, 1984; Los Angeles County Assessor's Office Parcel Map 6310/Sheet 8 dated November 5, 1958; surveys conducted May 31, 2006 and June 6, 2006 by CalVada Surveyors; and surveys conducted October 12, 2011 and September 10, 2013 by Dulin & Boynton.

> SITE RECORD PLAN Former Pechiney Cast Plate, Inc. Facility 3200 Fruitland Avenue Vernon, California

By: pah/jrw | Date: 03/30/15 | Project No. 10627.003

Sheet \square of \square

Vernon, California

By: pah/jrw Date: 12/18/14 Project No. 10627.003

Sheet □ of □

DETAIL RECORD DRAWINGS
Former Pechiney Cast Plate, Inc. Facility
3200 Fruitland Avenue
Vernon, California

By: pah/jrw | Date: 12/18/14 | Project No. 10627.003

Sheet \square of \square

Note:

Record drawings are based on prior as built records and were not verified as part of this work.

DRAWINGS NOT TO SCALE

DETAIL RECORD DRAWINGS

MARCH 8, 1999

Former Pechiney Cast Plate, Inc. Facility

3200 Fruitland Avenue

Vernon, California

By: pah/jrw | Date: 12/09/14 | Project No. 10627.003

Sheet \square of \square

O 1" 2" ORIGINAL SCALE CAUTION: THIS PLAN MAY BE REDUCED REVISION **REFERENCES:** PLANS 17 | RECORD GRADING PLAN DECEMBER 2014

18 | RECORD DRAWING (POND II)

EXPLANATION

MANHOLE DRAINAGE

MANHOLE UNKNOWN

---6"SAN----- 6' SANITARY SEWER PIPE

—12"SD—— 12" STORM DRAIN PIPE

—18"SD—— 18" STORM DRAIN PIPE

—24"SD—— 24" STORM DRAIN PIPE

—30"SD—— 30" STORM DRAIN PIPE

DATUM

S MANHOLE SEWER

¬ POWER POLE

CAS 12/18/14 DRAWN . KAF 4/10/15 DESIGNED . DLS CHECKED . REVIEWED __

DATE APRVE

amec foster wheeler

121 Innovation Drive, Suite 200

Irvine, California 92617

(949) 642-0245

BELOW GRADE DEMOLITION & SOIL EXCAVATION PECHINEY CAST PLATE, INC., FACILITY

SCALE: 1" = 80' SHEET: 1 OF 1 SHEETS

3200 FRUITLAND, VERNON, CALIFORNIA

RECORD GRADING PLAN APRIL 2015

D-110627.003

DATE: 04/10/2015